Homogeneous Grand Mixed Herz–Morrey Spaces and Their Applications

In this paper, we introduce the homogeneous grand mixed Herz–Morrey spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><msubsup><mover accent="true"><mi&g...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoxi Xia, Jiang Zhou
Format: Article
Language:English
Published: MDPI AG 2024-10-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/13/10/713
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850205600662683648
author Xiaoxi Xia
Jiang Zhou
author_facet Xiaoxi Xia
Jiang Zhou
author_sort Xiaoxi Xia
collection DOAJ
description In this paper, we introduce the homogeneous grand mixed Herz–Morrey spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><msubsup><mover accent="true"><mi>K</mi><mo>˙</mo></mover><mrow><mover accent="true"><mi>q</mi><mo>˜</mo></mover><mo>,</mo><mi>λ</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>p</mi><mo>)</mo><mo>,</mo><mi>θ</mi></mrow></msubsup><mrow><mo>(</mo><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and investigate their fundamental properties. We further explore the boundedness of sublinear operators and fractional-type operators on these spaces, establishing new results that contribute to the broader understanding of their applications.
format Article
id doaj-art-9b33b8adca2a4379a69158d1492d2206
institution OA Journals
issn 2075-1680
language English
publishDate 2024-10-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-9b33b8adca2a4379a69158d1492d22062025-08-20T02:11:04ZengMDPI AGAxioms2075-16802024-10-01131071310.3390/axioms13100713Homogeneous Grand Mixed Herz–Morrey Spaces and Their ApplicationsXiaoxi Xia0Jiang Zhou1College of Mathematics and System Science, Xinjiang University, Urumqi 830046, ChinaCollege of Mathematics and System Science, Xinjiang University, Urumqi 830046, ChinaIn this paper, we introduce the homogeneous grand mixed Herz–Morrey spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><msubsup><mover accent="true"><mi>K</mi><mo>˙</mo></mover><mrow><mover accent="true"><mi>q</mi><mo>˜</mo></mover><mo>,</mo><mi>λ</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>p</mi><mo>)</mo><mo>,</mo><mi>θ</mi></mrow></msubsup><mrow><mo>(</mo><msup><mi mathvariant="double-struck">R</mi><mi>n</mi></msup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> and investigate their fundamental properties. We further explore the boundedness of sublinear operators and fractional-type operators on these spaces, establishing new results that contribute to the broader understanding of their applications.https://www.mdpi.com/2075-1680/13/10/713homogeneous grand mixed Herz–Morrey spacessublinear operatorsfractional-type operators
spellingShingle Xiaoxi Xia
Jiang Zhou
Homogeneous Grand Mixed Herz–Morrey Spaces and Their Applications
Axioms
homogeneous grand mixed Herz–Morrey spaces
sublinear operators
fractional-type operators
title Homogeneous Grand Mixed Herz–Morrey Spaces and Their Applications
title_full Homogeneous Grand Mixed Herz–Morrey Spaces and Their Applications
title_fullStr Homogeneous Grand Mixed Herz–Morrey Spaces and Their Applications
title_full_unstemmed Homogeneous Grand Mixed Herz–Morrey Spaces and Their Applications
title_short Homogeneous Grand Mixed Herz–Morrey Spaces and Their Applications
title_sort homogeneous grand mixed herz morrey spaces and their applications
topic homogeneous grand mixed Herz–Morrey spaces
sublinear operators
fractional-type operators
url https://www.mdpi.com/2075-1680/13/10/713
work_keys_str_mv AT xiaoxixia homogeneousgrandmixedherzmorreyspacesandtheirapplications
AT jiangzhou homogeneousgrandmixedherzmorreyspacesandtheirapplications