Modulating product selectivity in lignin electroreduction with a robust metallic glass catalyst
Abstract Converting the lignin into value-added chemicals and fuels represents a promising way to upgrade lignin. Here, we present an effective electrocatalytic approach that simultaneously modulates the depolymerization and hydrogenation pathways of lignin model compounds within a single reaction s...
Saved in:
| Main Authors: | , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-04-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-58556-1 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Converting the lignin into value-added chemicals and fuels represents a promising way to upgrade lignin. Here, we present an effective electrocatalytic approach that simultaneously modulates the depolymerization and hydrogenation pathways of lignin model compounds within a single reaction system. By fine-tuning the pH of the electrolyte, we achieve a remarkable shift in product selectivity, from acetophenone (with selectivity >99%) to 1-phenylethanol (with selectivity >99%), while effectively preventing over-hydrogenation. The robust metallic glass (MG) catalyst, endowed with an amorphous structure, demonstrates high stability, activity, and full recyclability across over 100 consecutive cycles in ionic liquid electrolytes. The relatively strong affinity of the MG catalyst for the substrate during the initial reaction stage, in conjunction with its weaker binding to the phenolic product, as the reaction progresses, creates a delicate balance that optimizes substrate adsorption and product desorption, which is pivotal in driving the cascade hydrogenation process of acetophenone. This work opens versatile pathways for lignin upgrading through integrated tandem reactions and expands the scope of catalyst design with amorphous structures. |
|---|---|
| ISSN: | 2041-1723 |