Accuracy of an articulated head-and-neck motion model using deep learning-based instance segmentation of skeletal bones in CT scans for image registration in radiotherapy

Knowing about anatomical deformations in patient images is crucial for adaptive image-guided radiation therapy. Biomechanical models ensure biofidelity in deformable image registration, but manual contouring limits their clinical use. We investigate the application of automatically generated contour...

Full description

Saved in:
Bibliographic Details
Main Authors: Alexandra Walter, Cornelius J. Bauer, Ama Katseena Yawson, Philipp Hoegen-Saßmannshausen, Sebastian Adeberg, Jürgen Debus, Oliver Jäkel, Martin Frank, Kristina Giske
Format: Article
Language:English
Published: Taylor & Francis Group 2025-12-01
Series:Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/21681163.2025.2455752
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Knowing about anatomical deformations in patient images is crucial for adaptive image-guided radiation therapy. Biomechanical models ensure biofidelity in deformable image registration, but manual contouring limits their clinical use. We investigate the application of automatically generated contours for a biomechanical registration model in head and neck cancer treatment. For that, we automatically generate individual bone segmentations on planning CT scans examining a custom-trained nnU-Net model and the ready-trained TotalSegmentator model. Both sets of segmentations are evaluated using DICE, Hausdorff Distance and surface DICE. We investigate their impact on the build-up of the biomechanical articulated skeleton model by deviations in joint positioning and CT-CT registration accuracy using target registration error (TRE). The custom-trained model achieves 1.51 ± 0.26 mm TRE, with no significant difference in registration accuracy. While the TotalSegmentator does not provide all structures needed for the complete biomechanical model build-up. Overall, deep learning–based automatic bone segmentation can replace manual contouring in this model, matching its performance.
ISSN:2168-1163
2168-1171