Tensorial Maclaurin Approximation Bounds and Structural Properties for Mixed-Norm Orlicz–Zygmund Spaces

This article explores two distinct function spaces: Hilbert spaces and mixed-Orlicz–Zygmund spaces with variable exponents. We first examine the relational properties of Hilbert spaces in a tensorial framework, utilizing self-adjoint operators to derive key results. Additionally, we extend a Maclaur...

Full description

Saved in:
Bibliographic Details
Main Authors: Waqar Afzal, Mujahid Abbas, Mutum Zico Meetei, Saïd Bourazza
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/6/917
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850091464347877376
author Waqar Afzal
Mujahid Abbas
Mutum Zico Meetei
Saïd Bourazza
author_facet Waqar Afzal
Mujahid Abbas
Mutum Zico Meetei
Saïd Bourazza
author_sort Waqar Afzal
collection DOAJ
description This article explores two distinct function spaces: Hilbert spaces and mixed-Orlicz–Zygmund spaces with variable exponents. We first examine the relational properties of Hilbert spaces in a tensorial framework, utilizing self-adjoint operators to derive key results. Additionally, we extend a Maclaurin-type inequality to the tensorial setting using generalized convex mappings and establish various upper bounds. A non-trivial example involving exponential functions is also presented. Next, we introduce a new function space, the mixed-Orlicz–Zygmund space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="(" close=")"><msub><mo>ℓ</mo><mrow><mi mathvariant="monospace">q</mi><mo>(</mo><mo>·</mo><mo>)</mo></mrow></msub><msup><mo form="prefix">log</mo><mo>β</mo></msup><mfenced separators="" open="(" close=")"><msup><mi mathvariant="monospace">L</mi><mrow><mi mathvariant="monospace">p</mi><mo>(</mo><mo>·</mo><mo>)</mo></mrow></msup></mfenced></mfenced></semantics></math></inline-formula>, which unifies Orlicz–Zygmund spaces of integrability and sequence spaces. We investigate its fundamental properties including separability, compactness, and completeness, demonstrating its significance. This space generalizes the existing structures, reducing to mixed-norm Lebesgue spaces when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>β</mo><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> and to classical Lebesgue spaces when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="monospace">q</mi><mo>=</mo><mo>∞</mo><mo>,</mo><mo>β</mo><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>. Given the limited research on such spaces, our findings contribute valuable insights to the functional analysis.
format Article
id doaj-art-9a40d8d8553b49788dfa731559ebf007
institution DOAJ
issn 2227-7390
language English
publishDate 2025-03-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-9a40d8d8553b49788dfa731559ebf0072025-08-20T02:42:22ZengMDPI AGMathematics2227-73902025-03-0113691710.3390/math13060917Tensorial Maclaurin Approximation Bounds and Structural Properties for Mixed-Norm Orlicz–Zygmund SpacesWaqar Afzal0Mujahid Abbas1Mutum Zico Meetei2Saïd Bourazza3Abdus Salam School of Mathematical Sciences, Government College University, 68-B, New Muslim Town, Lahore 54600, PakistanAbdus Salam School of Mathematical Sciences, Government College University, 68-B, New Muslim Town, Lahore 54600, PakistanDepartment of Mathematics, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi ArabiaDepartment of Mathematics, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi ArabiaThis article explores two distinct function spaces: Hilbert spaces and mixed-Orlicz–Zygmund spaces with variable exponents. We first examine the relational properties of Hilbert spaces in a tensorial framework, utilizing self-adjoint operators to derive key results. Additionally, we extend a Maclaurin-type inequality to the tensorial setting using generalized convex mappings and establish various upper bounds. A non-trivial example involving exponential functions is also presented. Next, we introduce a new function space, the mixed-Orlicz–Zygmund space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="(" close=")"><msub><mo>ℓ</mo><mrow><mi mathvariant="monospace">q</mi><mo>(</mo><mo>·</mo><mo>)</mo></mrow></msub><msup><mo form="prefix">log</mo><mo>β</mo></msup><mfenced separators="" open="(" close=")"><msup><mi mathvariant="monospace">L</mi><mrow><mi mathvariant="monospace">p</mi><mo>(</mo><mo>·</mo><mo>)</mo></mrow></msup></mfenced></mfenced></semantics></math></inline-formula>, which unifies Orlicz–Zygmund spaces of integrability and sequence spaces. We investigate its fundamental properties including separability, compactness, and completeness, demonstrating its significance. This space generalizes the existing structures, reducing to mixed-norm Lebesgue spaces when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>β</mo><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> and to classical Lebesgue spaces when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="monospace">q</mi><mo>=</mo><mo>∞</mo><mo>,</mo><mo>β</mo><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula>. Given the limited research on such spaces, our findings contribute valuable insights to the functional analysis.https://www.mdpi.com/2227-7390/13/6/917self-adjoint operatorsHilbert spacesoperator convexitymixed-variable exponent spacesZygmund space
spellingShingle Waqar Afzal
Mujahid Abbas
Mutum Zico Meetei
Saïd Bourazza
Tensorial Maclaurin Approximation Bounds and Structural Properties for Mixed-Norm Orlicz–Zygmund Spaces
Mathematics
self-adjoint operators
Hilbert spaces
operator convexity
mixed-variable exponent spaces
Zygmund space
title Tensorial Maclaurin Approximation Bounds and Structural Properties for Mixed-Norm Orlicz–Zygmund Spaces
title_full Tensorial Maclaurin Approximation Bounds and Structural Properties for Mixed-Norm Orlicz–Zygmund Spaces
title_fullStr Tensorial Maclaurin Approximation Bounds and Structural Properties for Mixed-Norm Orlicz–Zygmund Spaces
title_full_unstemmed Tensorial Maclaurin Approximation Bounds and Structural Properties for Mixed-Norm Orlicz–Zygmund Spaces
title_short Tensorial Maclaurin Approximation Bounds and Structural Properties for Mixed-Norm Orlicz–Zygmund Spaces
title_sort tensorial maclaurin approximation bounds and structural properties for mixed norm orlicz zygmund spaces
topic self-adjoint operators
Hilbert spaces
operator convexity
mixed-variable exponent spaces
Zygmund space
url https://www.mdpi.com/2227-7390/13/6/917
work_keys_str_mv AT waqarafzal tensorialmaclaurinapproximationboundsandstructuralpropertiesformixednormorliczzygmundspaces
AT mujahidabbas tensorialmaclaurinapproximationboundsandstructuralpropertiesformixednormorliczzygmundspaces
AT mutumzicomeetei tensorialmaclaurinapproximationboundsandstructuralpropertiesformixednormorliczzygmundspaces
AT saidbourazza tensorialmaclaurinapproximationboundsandstructuralpropertiesformixednormorliczzygmundspaces