Peano Theorems for Pedjeu–Ladde-Type Multi-Time Scale Stochastic Differential Equations Driven by Fractional Noises

This paper examines fractional multi-time scale stochastic functional differential equations that, in addition, are driven by fractional noises. Based on a specially crafted fixed-point principle for the so-called “local operators”, we prove a Peano-type theorem on the existence of weak solutions, t...

Full description

Saved in:
Bibliographic Details
Main Authors: Arcady Ponosov, Lev Idels
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/2/204
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper examines fractional multi-time scale stochastic functional differential equations that, in addition, are driven by fractional noises. Based on a specially crafted fixed-point principle for the so-called “local operators”, we prove a Peano-type theorem on the existence of weak solutions, that is, those defined on an extended stochastic basis. To encompass all commonly used particular classes of fractional multi-time scale stochastic models, including those with random delays and impulses at random times, we consider equations with nonlinear random Volterra operators rather than functions. Some crucial properties of the associated integral operators, needed for the proofs of the main results, are studied as well. To illustrate major findings, several existence theorems, generalizing those known in the literature, are offered, with the emphasis put on the most popular examples such as ordinary stochastic differential equations driven by fractional noises, fractional stochastic differential equations with variable delays and fractional stochastic neutral differential equations.
ISSN:2227-7390