Scheduling Model and Algorithm for Transportation and Vehicle Charging of Multiple Autonomous Electric Vehicles
Autonomous electric vehicle (AEV) services leverage advanced autonomous driving and electric vehicle technologies to provide innovative, driverless transportation solutions. The biggest challenge faced by AEVs is the limited number of charging stations and long charging times. A critical challenge i...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/13/1/145 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1841549162305290240 |
---|---|
author | Xiaoli Wang Zhiyu Zhang Mengmeng Jiang Yifan Wang Yuping Wang |
author_facet | Xiaoli Wang Zhiyu Zhang Mengmeng Jiang Yifan Wang Yuping Wang |
author_sort | Xiaoli Wang |
collection | DOAJ |
description | Autonomous electric vehicle (AEV) services leverage advanced autonomous driving and electric vehicle technologies to provide innovative, driverless transportation solutions. The biggest challenge faced by AEVs is the limited number of charging stations and long charging times. A critical challenge is maximizing passenger travel satisfaction while reducing the AEV idle time. This involves coordinating passenger transport and charging tasks via leveraging the information from charging stations, passenger transport, and AEV data. There are four important contributions in this paper. Firstly, we introduce an integrated scheduling model that considers both passenger transport and charging tasks. Secondly, we propose a multi-level differentiated charging threshold strategy, which dynamically adjusts the charging threshold based on both AEV battery levels and the availability of charging stations, reducing competition among vehicles and minimizing waiting times. Thirdly, we develop a rapid strategy to optimize the selection of charging stations by combining geographic and deviation distance. Fourthly, we design a new evolutionary algorithm to solve the proposed model, in which a buffer space is introduced to promote diversity within the population. Finally, experimental results show that compared to the existing state-of-the-art scheduling algorithms, the proposed algorithm shortens the running time of scheduling algorithms by 6.72% and reduces the idle driving time of AEVs by 6.53%, which proves the effectiveness and efficiency of the proposed model and algorithm. |
format | Article |
id | doaj-art-9a2408299f8d486ca9378495fa5e9ae4 |
institution | Kabale University |
issn | 2227-7390 |
language | English |
publishDate | 2025-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Mathematics |
spelling | doaj-art-9a2408299f8d486ca9378495fa5e9ae42025-01-10T13:18:23ZengMDPI AGMathematics2227-73902025-01-0113114510.3390/math13010145Scheduling Model and Algorithm for Transportation and Vehicle Charging of Multiple Autonomous Electric VehiclesXiaoli Wang0Zhiyu Zhang1Mengmeng Jiang2Yifan Wang3Yuping Wang4School of Computer Science and Technology, Xidian University, Xi’an 710071, ChinaSchool of Computer Science and Technology, Xidian University, Xi’an 710071, ChinaSchool of Computer Science and Technology, Xidian University, Xi’an 710071, ChinaSchool of Computer Science and Technology, Xidian University, Xi’an 710071, ChinaSchool of Computer Science and Technology, Xidian University, Xi’an 710071, ChinaAutonomous electric vehicle (AEV) services leverage advanced autonomous driving and electric vehicle technologies to provide innovative, driverless transportation solutions. The biggest challenge faced by AEVs is the limited number of charging stations and long charging times. A critical challenge is maximizing passenger travel satisfaction while reducing the AEV idle time. This involves coordinating passenger transport and charging tasks via leveraging the information from charging stations, passenger transport, and AEV data. There are four important contributions in this paper. Firstly, we introduce an integrated scheduling model that considers both passenger transport and charging tasks. Secondly, we propose a multi-level differentiated charging threshold strategy, which dynamically adjusts the charging threshold based on both AEV battery levels and the availability of charging stations, reducing competition among vehicles and minimizing waiting times. Thirdly, we develop a rapid strategy to optimize the selection of charging stations by combining geographic and deviation distance. Fourthly, we design a new evolutionary algorithm to solve the proposed model, in which a buffer space is introduced to promote diversity within the population. Finally, experimental results show that compared to the existing state-of-the-art scheduling algorithms, the proposed algorithm shortens the running time of scheduling algorithms by 6.72% and reduces the idle driving time of AEVs by 6.53%, which proves the effectiveness and efficiency of the proposed model and algorithm.https://www.mdpi.com/2227-7390/13/1/145autonomous drivingelectric vehiclesvehicle chargingtransportation schedulingevolutionary algorithm |
spellingShingle | Xiaoli Wang Zhiyu Zhang Mengmeng Jiang Yifan Wang Yuping Wang Scheduling Model and Algorithm for Transportation and Vehicle Charging of Multiple Autonomous Electric Vehicles Mathematics autonomous driving electric vehicles vehicle charging transportation scheduling evolutionary algorithm |
title | Scheduling Model and Algorithm for Transportation and Vehicle Charging of Multiple Autonomous Electric Vehicles |
title_full | Scheduling Model and Algorithm for Transportation and Vehicle Charging of Multiple Autonomous Electric Vehicles |
title_fullStr | Scheduling Model and Algorithm for Transportation and Vehicle Charging of Multiple Autonomous Electric Vehicles |
title_full_unstemmed | Scheduling Model and Algorithm for Transportation and Vehicle Charging of Multiple Autonomous Electric Vehicles |
title_short | Scheduling Model and Algorithm for Transportation and Vehicle Charging of Multiple Autonomous Electric Vehicles |
title_sort | scheduling model and algorithm for transportation and vehicle charging of multiple autonomous electric vehicles |
topic | autonomous driving electric vehicles vehicle charging transportation scheduling evolutionary algorithm |
url | https://www.mdpi.com/2227-7390/13/1/145 |
work_keys_str_mv | AT xiaoliwang schedulingmodelandalgorithmfortransportationandvehiclechargingofmultipleautonomouselectricvehicles AT zhiyuzhang schedulingmodelandalgorithmfortransportationandvehiclechargingofmultipleautonomouselectricvehicles AT mengmengjiang schedulingmodelandalgorithmfortransportationandvehiclechargingofmultipleautonomouselectricvehicles AT yifanwang schedulingmodelandalgorithmfortransportationandvehiclechargingofmultipleautonomouselectricvehicles AT yupingwang schedulingmodelandalgorithmfortransportationandvehiclechargingofmultipleautonomouselectricvehicles |