Improving the Protection of Step-Down Transformers by Utilizing Percentage Differential Protection and Scale-Dependent Intrinsic Entropy
Transformer operations are susceptible to both internal and external faults. This study primarily employed software to construct a power system simulation model featuring a step-down transformer. The simulation model comprised three single-phase transformers with ten tap positions at the secondary c...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Entropy |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1099-4300/27/4/444 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Transformer operations are susceptible to both internal and external faults. This study primarily employed software to construct a power system simulation model featuring a step-down transformer. The simulation model comprised three single-phase transformers with ten tap positions at the secondary coil to analyze internal faults. Additionally, ten fault positions between the power transformer and the load were considered for external fault analysis. The protection scheme incorporated percentage differential protection for both the power transformer and the transmission line, aiming to explore fault characteristics. To mitigate the protection device’s sensitivity issues, the scale-dependent intrinsic entropy method was utilized as a decision support system to minimize power system protection misoperations. The results indicated the effectiveness and practicality of the auxiliary method through comprehensive failure analysis. |
|---|---|
| ISSN: | 1099-4300 |