Impact of mutations in highly conserved amino acids of the HIV-1 Gag-p24 and Env-gp120 proteins on viral replication in different genetic backgrounds.

It has been hypothesized that a single mutation at a highly conserved amino acid site (HCS) can be severely deleterious to HIV in most if not all isolate-specific genetic backgrounds. Consequently, potentially universal HIV-1 vaccines exclusively targeting highly conserved regions of the viral prote...

Full description

Saved in:
Bibliographic Details
Main Authors: Yi Liu, Ushnal Rao, Jan McClure, Philip Konopa, Siriphan Manocheewa, Moon Kim, Lennie Chen, Ryan M Troyer, Denis M Tebit, Sarah Holte, Eric J Arts, James I Mullins
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0094240&type=printable
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:It has been hypothesized that a single mutation at a highly conserved amino acid site (HCS) can be severely deleterious to HIV in most if not all isolate-specific genetic backgrounds. Consequently, potentially universal HIV-1 vaccines exclusively targeting highly conserved regions of the viral proteome have been proposed. To test this hypothesis, we examined the impact of 10 Gag-p24 and 9 Env-gp120 HCS single mutations on viral fitness. In the original founder sequence of the subject in whom these mutations were identified, all Gag-p24 HCS mutations significantly reduced viral replication fitness, including 7 that were lethal. Similar results were obtained at 9/10 sites when the same mutations were introduced into the founder sequences of two epidemiologically unlinked subjects. In contrast, none of the 9 Env-gp120 HCS mutations were lethal in the original founder sequence, and four had no fitness cost. Hence, HCS mutations in Gag-p24 are likely to be severely deleterious in different HIV-1 subtype B backgrounds; however, some HCS mutations in both Gag-p24 and Env-gp120 fragments can be well tolerated. Therefore, when designing HIV-1 immunogens that are intended to force the virus to nonviable escape pathways, the fitness constraints on the HIV segments included should be considered beyond their conservation level.
ISSN:1932-6203