Experimental Study on the Influence of Cooling Rates on the Permeability Coefficient of Thawed Soil After Open Frozen
Adjusting freezing patterns is a critical technology in artificial ground freezing (AGF) projects to mitigate frost heave. The distribution of ice lenses formed under varying freezing patterns not only influences frost heave but also modifies the structure of thawed soil, thereby affecting the thaw...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-02-01
|
| Series: | Buildings |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2075-5309/15/5/753 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850226178903769088 |
|---|---|
| author | Zhen Wang Haoran Wang Xiaohui Ni Ming Wu Shu Zhu Semaierjiang Maimaitiyusupu Zhende Zhu |
| author_facet | Zhen Wang Haoran Wang Xiaohui Ni Ming Wu Shu Zhu Semaierjiang Maimaitiyusupu Zhende Zhu |
| author_sort | Zhen Wang |
| collection | DOAJ |
| description | Adjusting freezing patterns is a critical technology in artificial ground freezing (AGF) projects to mitigate frost heave. The distribution of ice lenses formed under varying freezing patterns not only influences frost heave but also modifies the structure of thawed soil, thereby affecting the thaw settlement process. However, most existing research on freezing patterns has primarily focused on their impact on frost heave, with limited attention paid to thaw settlement. This study investigates the cooling rates at the cold side of open frozen systems, which are the key variables defining different freezing patterns, and examines their effect on the permeability coefficient of thawed soil. Experimental results demonstrate that the cooling rate significantly influences the soil permeability coefficient. This is specifically manifested as a 12.18-fold enhancement in permeability coefficients as cooling rates decrease from 0.5 °C/s to 0.005 °C/s. As the temperature gradient increases, the permeability coefficients increase. The minimum enhancement magnitude in the permeability coefficient was recorded at −75 °C. A decrease in the cooling rate leads to an increase in the permeability coefficient, particularly under high frozen temperature conditions. Utilizing the Kozeny–Carman permeability coefficient equation, a predictive model for the permeability coefficient of thawed soil was developed. In practical AGF projects, any freezing pattern can be represented as a combination of different cooling rates. By applying this predictive model, the permeability coefficient of thawed soil under any freezing pattern can be simulated using the corresponding combination of cooling rates. This study provides a valuable reference for predicting thaw settlement following artificial freezing construction. |
| format | Article |
| id | doaj-art-993c6da80ee0437ba211562ae424ea56 |
| institution | OA Journals |
| issn | 2075-5309 |
| language | English |
| publishDate | 2025-02-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Buildings |
| spelling | doaj-art-993c6da80ee0437ba211562ae424ea562025-08-20T02:05:09ZengMDPI AGBuildings2075-53092025-02-0115575310.3390/buildings15050753Experimental Study on the Influence of Cooling Rates on the Permeability Coefficient of Thawed Soil After Open FrozenZhen Wang0Haoran Wang1Xiaohui Ni2Ming Wu3Shu Zhu4Semaierjiang Maimaitiyusupu5Zhende Zhu6Department of Civil Engineering and Smart Cities, Shantou University, Shantou 515063, ChinaDepartment of Civil Engineering and Smart Cities, Shantou University, Shantou 515063, ChinaCollege of Civil Engineering and Architecture, Jiaxing University, Jiaxing 314001, ChinaDepartment of Civil Engineering and Smart Cities, Shantou University, Shantou 515063, ChinaKey Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, ChinaCollege of Civil Engineering, Kashi University, Kashgar 844006, ChinaKey Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, ChinaAdjusting freezing patterns is a critical technology in artificial ground freezing (AGF) projects to mitigate frost heave. The distribution of ice lenses formed under varying freezing patterns not only influences frost heave but also modifies the structure of thawed soil, thereby affecting the thaw settlement process. However, most existing research on freezing patterns has primarily focused on their impact on frost heave, with limited attention paid to thaw settlement. This study investigates the cooling rates at the cold side of open frozen systems, which are the key variables defining different freezing patterns, and examines their effect on the permeability coefficient of thawed soil. Experimental results demonstrate that the cooling rate significantly influences the soil permeability coefficient. This is specifically manifested as a 12.18-fold enhancement in permeability coefficients as cooling rates decrease from 0.5 °C/s to 0.005 °C/s. As the temperature gradient increases, the permeability coefficients increase. The minimum enhancement magnitude in the permeability coefficient was recorded at −75 °C. A decrease in the cooling rate leads to an increase in the permeability coefficient, particularly under high frozen temperature conditions. Utilizing the Kozeny–Carman permeability coefficient equation, a predictive model for the permeability coefficient of thawed soil was developed. In practical AGF projects, any freezing pattern can be represented as a combination of different cooling rates. By applying this predictive model, the permeability coefficient of thawed soil under any freezing pattern can be simulated using the corresponding combination of cooling rates. This study provides a valuable reference for predicting thaw settlement following artificial freezing construction.https://www.mdpi.com/2075-5309/15/5/753freezing patternscooling rateartificial ground freezingthawed soilpermeability coefficient |
| spellingShingle | Zhen Wang Haoran Wang Xiaohui Ni Ming Wu Shu Zhu Semaierjiang Maimaitiyusupu Zhende Zhu Experimental Study on the Influence of Cooling Rates on the Permeability Coefficient of Thawed Soil After Open Frozen Buildings freezing patterns cooling rate artificial ground freezing thawed soil permeability coefficient |
| title | Experimental Study on the Influence of Cooling Rates on the Permeability Coefficient of Thawed Soil After Open Frozen |
| title_full | Experimental Study on the Influence of Cooling Rates on the Permeability Coefficient of Thawed Soil After Open Frozen |
| title_fullStr | Experimental Study on the Influence of Cooling Rates on the Permeability Coefficient of Thawed Soil After Open Frozen |
| title_full_unstemmed | Experimental Study on the Influence of Cooling Rates on the Permeability Coefficient of Thawed Soil After Open Frozen |
| title_short | Experimental Study on the Influence of Cooling Rates on the Permeability Coefficient of Thawed Soil After Open Frozen |
| title_sort | experimental study on the influence of cooling rates on the permeability coefficient of thawed soil after open frozen |
| topic | freezing patterns cooling rate artificial ground freezing thawed soil permeability coefficient |
| url | https://www.mdpi.com/2075-5309/15/5/753 |
| work_keys_str_mv | AT zhenwang experimentalstudyontheinfluenceofcoolingratesonthepermeabilitycoefficientofthawedsoilafteropenfrozen AT haoranwang experimentalstudyontheinfluenceofcoolingratesonthepermeabilitycoefficientofthawedsoilafteropenfrozen AT xiaohuini experimentalstudyontheinfluenceofcoolingratesonthepermeabilitycoefficientofthawedsoilafteropenfrozen AT mingwu experimentalstudyontheinfluenceofcoolingratesonthepermeabilitycoefficientofthawedsoilafteropenfrozen AT shuzhu experimentalstudyontheinfluenceofcoolingratesonthepermeabilitycoefficientofthawedsoilafteropenfrozen AT semaierjiangmaimaitiyusupu experimentalstudyontheinfluenceofcoolingratesonthepermeabilitycoefficientofthawedsoilafteropenfrozen AT zhendezhu experimentalstudyontheinfluenceofcoolingratesonthepermeabilitycoefficientofthawedsoilafteropenfrozen |