VDB Entropy Measures and Irregularity-Based Indices for the Rectangular Kekulene System
Theoretical chemists are fascinated by polycyclic aromatic hydrocarbons (PAHs) because of their unique electromagnetic and other significant properties, such as superaromaticity. The study of PAHs has been steadily increasing because of their wide-ranging applications in several fields, like steel m...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-01-01
|
Series: | Journal of Mathematics |
Online Access: | http://dx.doi.org/10.1155/2021/7404529 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832546002440028160 |
---|---|
author | Weidong Zhao K. Julietraja P. Venugopal Xiujun Zhang |
author_facet | Weidong Zhao K. Julietraja P. Venugopal Xiujun Zhang |
author_sort | Weidong Zhao |
collection | DOAJ |
description | Theoretical chemists are fascinated by polycyclic aromatic hydrocarbons (PAHs) because of their unique electromagnetic and other significant properties, such as superaromaticity. The study of PAHs has been steadily increasing because of their wide-ranging applications in several fields, like steel manufacturing, shale oil extraction, coal gasification, production of coke, tar distillation, and nanosciences. Topological indices (TIs) are numerical quantities that give a mathematical expression for the chemical structures. They are useful and cost-effective tools for predicting the properties of chemical compounds theoretically. Entropic network measures are a type of TIs with a broad array of applications, involving quantitative characterization of molecular structures and the investigation of some specific chemical properties of molecular graphs. Irregularity indices are numerical parameters that quantify the irregularity of a molecular graph and are used to predict some of the chemical properties, including boiling points, resistance, enthalpy of vaporization, entropy, melting points, and toxicity. This study aims to determine analytical expressions for the VDB entropy and irregularity-based indices in the rectangular Kekulene system. |
format | Article |
id | doaj-art-9931bbbeeb984fc3ace07f954a670582 |
institution | Kabale University |
issn | 2314-4785 |
language | English |
publishDate | 2021-01-01 |
publisher | Wiley |
record_format | Article |
series | Journal of Mathematics |
spelling | doaj-art-9931bbbeeb984fc3ace07f954a6705822025-02-03T07:24:14ZengWileyJournal of Mathematics2314-47852021-01-01202110.1155/2021/7404529VDB Entropy Measures and Irregularity-Based Indices for the Rectangular Kekulene SystemWeidong Zhao0K. Julietraja1P. Venugopal2Xiujun Zhang3School of Computer ScienceDepartment of MathematicsMathematics, School of Science & HumanitiesSchool of Computer ScienceTheoretical chemists are fascinated by polycyclic aromatic hydrocarbons (PAHs) because of their unique electromagnetic and other significant properties, such as superaromaticity. The study of PAHs has been steadily increasing because of their wide-ranging applications in several fields, like steel manufacturing, shale oil extraction, coal gasification, production of coke, tar distillation, and nanosciences. Topological indices (TIs) are numerical quantities that give a mathematical expression for the chemical structures. They are useful and cost-effective tools for predicting the properties of chemical compounds theoretically. Entropic network measures are a type of TIs with a broad array of applications, involving quantitative characterization of molecular structures and the investigation of some specific chemical properties of molecular graphs. Irregularity indices are numerical parameters that quantify the irregularity of a molecular graph and are used to predict some of the chemical properties, including boiling points, resistance, enthalpy of vaporization, entropy, melting points, and toxicity. This study aims to determine analytical expressions for the VDB entropy and irregularity-based indices in the rectangular Kekulene system.http://dx.doi.org/10.1155/2021/7404529 |
spellingShingle | Weidong Zhao K. Julietraja P. Venugopal Xiujun Zhang VDB Entropy Measures and Irregularity-Based Indices for the Rectangular Kekulene System Journal of Mathematics |
title | VDB Entropy Measures and Irregularity-Based Indices for the Rectangular Kekulene System |
title_full | VDB Entropy Measures and Irregularity-Based Indices for the Rectangular Kekulene System |
title_fullStr | VDB Entropy Measures and Irregularity-Based Indices for the Rectangular Kekulene System |
title_full_unstemmed | VDB Entropy Measures and Irregularity-Based Indices for the Rectangular Kekulene System |
title_short | VDB Entropy Measures and Irregularity-Based Indices for the Rectangular Kekulene System |
title_sort | vdb entropy measures and irregularity based indices for the rectangular kekulene system |
url | http://dx.doi.org/10.1155/2021/7404529 |
work_keys_str_mv | AT weidongzhao vdbentropymeasuresandirregularitybasedindicesfortherectangularkekulenesystem AT kjulietraja vdbentropymeasuresandirregularitybasedindicesfortherectangularkekulenesystem AT pvenugopal vdbentropymeasuresandirregularitybasedindicesfortherectangularkekulenesystem AT xiujunzhang vdbentropymeasuresandirregularitybasedindicesfortherectangularkekulenesystem |