Bio-Refinery of Organics into Value-Added Biopolymers: Exploring the Effects of Hydraulic Retention Time and Organic Loading Rate on Biopolymer Harvesting from a Biofilm-Based Process

This study aimed to examine the impacts of hydraulic retention time (HRT) and organic loading rate (OLR) on the alginate-like exopolymers’ (ALEs) recovery potential from a biofilm-based process. A lab-scale moving bed biofilm reactor (MBBR) was operated under different HRT (12.0, 6.0, and 2.0 h) and...

Full description

Saved in:
Bibliographic Details
Main Authors: Qingna Shang, Lin Li, Yi Zhang, Xueqing Shi, Harsha Ratnaweera, Dong-Hoon Kim, Haifeng Zhang
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Toxics
Subjects:
Online Access:https://www.mdpi.com/2305-6304/13/3/183
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aimed to examine the impacts of hydraulic retention time (HRT) and organic loading rate (OLR) on the alginate-like exopolymers’ (ALEs) recovery potential from a biofilm-based process. A lab-scale moving bed biofilm reactor (MBBR) was operated under different HRT (12.0, 6.0, and 2.0 h) and OLR (1.0, 2.0, and 6.0 kg COD/m<sup>3</sup>/d) conditions. The results demonstrated that the reduction in HRT and increase in OLR had remarkable effects on enhancing ALE production and improving its properties, which resulted in the ALE yield increasing from 177.8 to 221.5 mg/g VSS, with the protein content rising from 399.3 to 494.3 mg/g ALE and the enhanced alginate purity by 39.8%, corresponding to the TOC concentration increasing from 108.3 to 157.0 mg/g ALE. Meanwhile, to illustrate different ALE recovery potentials, microbial community compositions of the MBBR at various operational conditions were also assessed. The results showed that a higher relative abundance of EPS producers (29.86%) was observed in the MBBR with an HRT of 2.0 h than that of 12.0 h and 6.0 h, revealing its higher ALE recovery potential. This study yields crucial results in terms of resource recovery for wastewater reclamation by providing an effective approach to directionally cultivating ALEs.
ISSN:2305-6304