Experimental Investigation of Antibiotic Photodegradation Using a Nanocatalyst Synthesized via an Eco-Friendly Process
Iron-based nanostructures mediated by plant aqueous extract were synthesized. The nanostructures were subjected to ultraviolet radiation to degrade a difficult-to-degrade compound. Various characterization techniques were performed to analyze the morphology of the nanomaterial, including scanning el...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/8/4308 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Iron-based nanostructures mediated by plant aqueous extract were synthesized. The nanostructures were subjected to ultraviolet radiation to degrade a difficult-to-degrade compound. Various characterization techniques were performed to analyze the morphology of the nanomaterial, including scanning electron microscopy (SEM) and transmission electron microscopy (TEM), as well as crystallinity by X-ray diffraction (XRD). The chemical composition was investigated by energy dispersive X-ray spectroscopy (EDX) and structural characteristics by Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, and thermogravimetric analysis (TGA). The results showed that the nanoparticles exhibited high photocatalytic efficiency, achieving 80% degradation of the pollutant. The study concludes that iron nanoparticles synthesized with plant aqueous extract are promising for the degradation of recalcitrant compounds, combining good efficiency with a cost-effective synthesis approach. |
|---|---|
| ISSN: | 2076-3417 |