Retrieval-augmented generation elevates local LLM quality in radiology contrast media consultation

Abstract Large language models (LLMs) demonstrate significant potential in healthcare applications, but clinical deployment is limited by privacy concerns and insufficient medical domain training. This study investigated whether retrieval-augmented generation (RAG) can improve locally deployable LLM...

Full description

Saved in:
Bibliographic Details
Main Authors: Akihiko Wada, Yuya Tanaka, Mitsuo Nishizawa, Akira Yamamoto, Toshiaki Akashi, Akifumi Hagiwara, Yayoi Hayakawa, Junko Kikuta, Keigo Shimoji, Katsuhiro Sano, Koji Kamagata, Atsushi Nakanishi, Shigeki Aoki
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:npj Digital Medicine
Online Access:https://doi.org/10.1038/s41746-025-01802-z
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Large language models (LLMs) demonstrate significant potential in healthcare applications, but clinical deployment is limited by privacy concerns and insufficient medical domain training. This study investigated whether retrieval-augmented generation (RAG) can improve locally deployable LLM for radiology contrast media consultation. In 100 synthetic iodinated contrast media consultations we compared Llama 3.2-11B (baseline and RAG) with three cloud-based models—GPT-4o mini, Gemini 2.0 Flash and Claude 3.5 Haiku. A blinded radiologist ranked the five replies per case, and three LLM-based judges scored accuracy, safety, structure, tone, applicability and latency. Under controlled conditions, RAG eliminated hallucinations (0% vs 8%; χ²₍Yates₎ = 6.38, p = 0.012) and improved mean rank by 1.3 (Z = –4.82, p < 0.001), though performance gaps with cloud models persist. The RAG-enhanced model remained faster (2.6 s vs 4.9–7.3 s) while the LLM-based judges preferred it over GPT-4o mini, though the radiologist ranked GPT-4o mini higher. RAG thus provides meaningful improvements for local clinical LLMs while maintaining the privacy benefits of on-premise deployment.
ISSN:2398-6352