Identification of nanomolar adenosine A2A receptor ligands using reinforcement learning and structure-based drug design

Abstract Generative chemical language models (CLMs) have demonstrated success in learning language-based molecular representations for de novo drug design. Here, we integrate structure-based drug design (SBDD) principles with CLMs to go from protein structure to novel small-molecule ligands, without...

Full description

Saved in:
Bibliographic Details
Main Authors: Morgan Thomas, Pierre G. Matricon, Robert J. Gillespie, Maja Napiórkowska, Hannah Neale, Jonathan S. Mason, Jason Brown, Kaan Harwood, Charlotte Fieldhouse, Nigel A. Swain, Tian Geng, Noel M. O’Boyle, Francesca Deflorian, Andreas Bender, Chris de Graaf
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-60629-0
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849402005569667072
author Morgan Thomas
Pierre G. Matricon
Robert J. Gillespie
Maja Napiórkowska
Hannah Neale
Jonathan S. Mason
Jason Brown
Kaan Harwood
Charlotte Fieldhouse
Nigel A. Swain
Tian Geng
Noel M. O’Boyle
Francesca Deflorian
Andreas Bender
Chris de Graaf
author_facet Morgan Thomas
Pierre G. Matricon
Robert J. Gillespie
Maja Napiórkowska
Hannah Neale
Jonathan S. Mason
Jason Brown
Kaan Harwood
Charlotte Fieldhouse
Nigel A. Swain
Tian Geng
Noel M. O’Boyle
Francesca Deflorian
Andreas Bender
Chris de Graaf
author_sort Morgan Thomas
collection DOAJ
description Abstract Generative chemical language models (CLMs) have demonstrated success in learning language-based molecular representations for de novo drug design. Here, we integrate structure-based drug design (SBDD) principles with CLMs to go from protein structure to novel small-molecule ligands, without a priori knowledge of ligand chemistry. Using Augmented Hill-Climb, we successfully optimise multiple objectives within a practical timeframe, including protein-ligand complementarity. Resulting de novo molecules contain known or promising adenosine A2A receptor ligand chemistry that is not available in commercial vendor libraries, accessing commercially novel areas of chemical space. Experimental validation demonstrates a binding hit rate of 88%, with 50% having confirmed functional activity, including three nanomolar ligands and two novel chemotypes. The two strongest binders are co-crystallised with the A2A receptor, revealing their binding mechanisms that can be used to inform future iterations of structure-based de novo design, closing the AI SBDD loop.
format Article
id doaj-art-98a2709b77be4faba2ce3784ca8bc399
institution Kabale University
issn 2041-1723
language English
publishDate 2025-07-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-98a2709b77be4faba2ce3784ca8bc3992025-08-20T03:37:38ZengNature PortfolioNature Communications2041-17232025-07-0116111410.1038/s41467-025-60629-0Identification of nanomolar adenosine A2A receptor ligands using reinforcement learning and structure-based drug designMorgan Thomas0Pierre G. Matricon1Robert J. Gillespie2Maja Napiórkowska3Hannah Neale4Jonathan S. Mason5Jason Brown6Kaan Harwood7Charlotte Fieldhouse8Nigel A. Swain9Tian Geng10Noel M. O’Boyle11Francesca Deflorian12Andreas Bender13Chris de Graaf14Centre for Molecular Informatics, Department of Chemistry, University of CambridgeNxera Pharma, Steinmetz Building, Granta Park, Great AbingtonNxera Pharma, Steinmetz Building, Granta Park, Great AbingtonNxera Pharma, Steinmetz Building, Granta Park, Great AbingtonNxera Pharma, Steinmetz Building, Granta Park, Great AbingtonNxera Pharma, Steinmetz Building, Granta Park, Great AbingtonNxera Pharma, Steinmetz Building, Granta Park, Great AbingtonNxera Pharma, Steinmetz Building, Granta Park, Great AbingtonNxera Pharma, Steinmetz Building, Granta Park, Great AbingtonNxera Pharma, Steinmetz Building, Granta Park, Great AbingtonNxera Pharma, Steinmetz Building, Granta Park, Great AbingtonNxera Pharma, Steinmetz Building, Granta Park, Great AbingtonNxera Pharma, Steinmetz Building, Granta Park, Great AbingtonCentre for Molecular Informatics, Department of Chemistry, University of CambridgeNxera Pharma, Steinmetz Building, Granta Park, Great AbingtonAbstract Generative chemical language models (CLMs) have demonstrated success in learning language-based molecular representations for de novo drug design. Here, we integrate structure-based drug design (SBDD) principles with CLMs to go from protein structure to novel small-molecule ligands, without a priori knowledge of ligand chemistry. Using Augmented Hill-Climb, we successfully optimise multiple objectives within a practical timeframe, including protein-ligand complementarity. Resulting de novo molecules contain known or promising adenosine A2A receptor ligand chemistry that is not available in commercial vendor libraries, accessing commercially novel areas of chemical space. Experimental validation demonstrates a binding hit rate of 88%, with 50% having confirmed functional activity, including three nanomolar ligands and two novel chemotypes. The two strongest binders are co-crystallised with the A2A receptor, revealing their binding mechanisms that can be used to inform future iterations of structure-based de novo design, closing the AI SBDD loop.https://doi.org/10.1038/s41467-025-60629-0
spellingShingle Morgan Thomas
Pierre G. Matricon
Robert J. Gillespie
Maja Napiórkowska
Hannah Neale
Jonathan S. Mason
Jason Brown
Kaan Harwood
Charlotte Fieldhouse
Nigel A. Swain
Tian Geng
Noel M. O’Boyle
Francesca Deflorian
Andreas Bender
Chris de Graaf
Identification of nanomolar adenosine A2A receptor ligands using reinforcement learning and structure-based drug design
Nature Communications
title Identification of nanomolar adenosine A2A receptor ligands using reinforcement learning and structure-based drug design
title_full Identification of nanomolar adenosine A2A receptor ligands using reinforcement learning and structure-based drug design
title_fullStr Identification of nanomolar adenosine A2A receptor ligands using reinforcement learning and structure-based drug design
title_full_unstemmed Identification of nanomolar adenosine A2A receptor ligands using reinforcement learning and structure-based drug design
title_short Identification of nanomolar adenosine A2A receptor ligands using reinforcement learning and structure-based drug design
title_sort identification of nanomolar adenosine a2a receptor ligands using reinforcement learning and structure based drug design
url https://doi.org/10.1038/s41467-025-60629-0
work_keys_str_mv AT morganthomas identificationofnanomolaradenosinea2areceptorligandsusingreinforcementlearningandstructurebaseddrugdesign
AT pierregmatricon identificationofnanomolaradenosinea2areceptorligandsusingreinforcementlearningandstructurebaseddrugdesign
AT robertjgillespie identificationofnanomolaradenosinea2areceptorligandsusingreinforcementlearningandstructurebaseddrugdesign
AT majanapiorkowska identificationofnanomolaradenosinea2areceptorligandsusingreinforcementlearningandstructurebaseddrugdesign
AT hannahneale identificationofnanomolaradenosinea2areceptorligandsusingreinforcementlearningandstructurebaseddrugdesign
AT jonathansmason identificationofnanomolaradenosinea2areceptorligandsusingreinforcementlearningandstructurebaseddrugdesign
AT jasonbrown identificationofnanomolaradenosinea2areceptorligandsusingreinforcementlearningandstructurebaseddrugdesign
AT kaanharwood identificationofnanomolaradenosinea2areceptorligandsusingreinforcementlearningandstructurebaseddrugdesign
AT charlottefieldhouse identificationofnanomolaradenosinea2areceptorligandsusingreinforcementlearningandstructurebaseddrugdesign
AT nigelaswain identificationofnanomolaradenosinea2areceptorligandsusingreinforcementlearningandstructurebaseddrugdesign
AT tiangeng identificationofnanomolaradenosinea2areceptorligandsusingreinforcementlearningandstructurebaseddrugdesign
AT noelmoboyle identificationofnanomolaradenosinea2areceptorligandsusingreinforcementlearningandstructurebaseddrugdesign
AT francescadeflorian identificationofnanomolaradenosinea2areceptorligandsusingreinforcementlearningandstructurebaseddrugdesign
AT andreasbender identificationofnanomolaradenosinea2areceptorligandsusingreinforcementlearningandstructurebaseddrugdesign
AT chrisdegraaf identificationofnanomolaradenosinea2areceptorligandsusingreinforcementlearningandstructurebaseddrugdesign