Gaussian mixtures closest to a given measure via optimal transport
Given a determinate (multivariate) probability measure $\mu $, we characterize Gaussian mixtures $\nu _\phi $ which minimize the Wasserstein distance $W_2(\mu ,\nu _\phi )$ to $\mu $ when the mixing probability measure $\phi $ on the parameters $(\mathbf{m},\mathbf{\Sigma })$ of the Gaussians is sup...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-11-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.657/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!