Antimicrobial Metabolites Isolated from Some Marine Bacteria Associated with <i>Callyspongia crassa</i> Sponge of the Red Sea
The Red Sea is rich in symbiotic microorganisms that have been identified as sources of bioactive compounds with antimicrobial, antifungal, and antioxidant properties. In this study, we aimed to explore the potential of marine sponge-associated bacteria as sources of antibacterial compounds, emphasi...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-07-01
|
| Series: | Microorganisms |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-2607/13/7/1552 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The Red Sea is rich in symbiotic microorganisms that have been identified as sources of bioactive compounds with antimicrobial, antifungal, and antioxidant properties. In this study, we aimed to explore the potential of marine sponge-associated bacteria as sources of antibacterial compounds, emphasizing their significance in combating antibiotic resistance (AMR). The crude extracts of <i>Micrococcus</i>, <i>Bacillus</i>, and <i>Staphylococcus saprophyticus</i> exhibited significant antibacterial activity, with inhibition zones measuring 12 mm and 14 mm against <i>Escherichia coli</i>, <i>Staphylococcus aureus</i>, <i>Candida albicans</i>, and other infectious strains. The DPPH assay showed that the bacterial isolates AN3 and AN6 exhibited notable antioxidant activity at a concentration of 100 mg/mL. To characterize the chemical constituents responsible for the observed bioactivity, a GC–MS analysis was performed on ethyl acetate extracts of the potent strains. The analysis identified a range of antimicrobial compounds, including straight-chain alkanes (e.g., Tetradecane), cyclic structures (e.g., Cyclopropane derivatives), and phenolic compounds, all of which are known to disrupt microbial membranes or interfere with metabolic pathways. The bioprospecting and large-scale production of these compounds are challenging. In conclusion, this study underscores the potential for marine bacteria associated with sponges from the Red Sea to be a source of bioactive compounds with therapeutic relevance. |
|---|---|
| ISSN: | 2076-2607 |