Transverse Self-Propulsion Enhances the Aggregation of Active Dumbbells

We investigate a two-dimensional system of active Brownian dumbbells using molecular dynamics simulations. In this model, each dumbbell is driven by an active force oriented perpendicular to the axis connecting its two constituent beads. We characterize the resulting phase behavior and find that, ac...

Full description

Saved in:
Bibliographic Details
Main Authors: Pasquale Digregorio, Claudio Basilio Caporusso, Lucio Mauro Carenza, Giuseppe Gonnella, Daniela Moretti, Giuseppe Negro, Massimiliano Semeraro, Antonio Suma
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/27/7/692
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849418559768231936
author Pasquale Digregorio
Claudio Basilio Caporusso
Lucio Mauro Carenza
Giuseppe Gonnella
Daniela Moretti
Giuseppe Negro
Massimiliano Semeraro
Antonio Suma
author_facet Pasquale Digregorio
Claudio Basilio Caporusso
Lucio Mauro Carenza
Giuseppe Gonnella
Daniela Moretti
Giuseppe Negro
Massimiliano Semeraro
Antonio Suma
author_sort Pasquale Digregorio
collection DOAJ
description We investigate a two-dimensional system of active Brownian dumbbells using molecular dynamics simulations. In this model, each dumbbell is driven by an active force oriented perpendicular to the axis connecting its two constituent beads. We characterize the resulting phase behavior and find that, across all values of activity, the system undergoes phase separation between dilute and dense phases. The dense phase exhibits hexatic order, and for large enough activity, we observe a marked increase in local polarization, with dumbbells predominantly oriented towards the interior of the clusters. Compared to the case of axially self-propelled dumbbells, we find that the binodal region is enlarged towards lower densities at all activities. This shift arises because dumbbells with transverse propulsion can more easily form stable cluster cores, serving as nucleation seeds, and show a highly suppressed escaping rate from the cluster boundary. Finally, we observe that clusters exhibit spontaneous rotation, with the modulus of the angular velocity scaling as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ω</mi><mo>∼</mo><msubsup><mi>r</mi><mi>g</mi><mrow><mo>−</mo><mn>2</mn></mrow></msubsup></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>r</mi><mi>g</mi></msub></semantics></math></inline-formula> is the cluster’s radius of gyration. This contrasts with axially propelled dumbbells, where the scaling follows <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ω</mi><mo>∼</mo><msubsup><mi>r</mi><mi>g</mi><mrow><mo>−</mo><mn>1</mn></mrow></msubsup></mrow></semantics></math></inline-formula>. We develop a simplified analytical model to rationalize this scaling behavior.
format Article
id doaj-art-985e6e762e9d498692f09e2d47ab107f
institution Kabale University
issn 1099-4300
language English
publishDate 2025-06-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj-art-985e6e762e9d498692f09e2d47ab107f2025-08-20T03:32:26ZengMDPI AGEntropy1099-43002025-06-0127769210.3390/e27070692Transverse Self-Propulsion Enhances the Aggregation of Active DumbbellsPasquale Digregorio0Claudio Basilio Caporusso1Lucio Mauro Carenza2Giuseppe Gonnella3Daniela Moretti4Giuseppe Negro5Massimiliano Semeraro6Antonio Suma7Dipartimento Interateneo di Fisica, Università Degli Studi di Bari and INFN, Sezione di Bari, Via Amendola 173, 70126 Bari, ItalyDipartimento Interateneo di Fisica, Università Degli Studi di Bari and INFN, Sezione di Bari, Via Amendola 173, 70126 Bari, ItalyDipartimento Interateneo di Fisica, Università Degli Studi di Bari and INFN, Sezione di Bari, Via Amendola 173, 70126 Bari, ItalyDipartimento Interateneo di Fisica, Università Degli Studi di Bari and INFN, Sezione di Bari, Via Amendola 173, 70126 Bari, ItalyDipartimento Interateneo di Fisica, Università Degli Studi di Bari and INFN, Sezione di Bari, Via Amendola 173, 70126 Bari, ItalySUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, UKDipartimento Interateneo di Fisica, Università Degli Studi di Bari and INFN, Sezione di Bari, Via Amendola 173, 70126 Bari, ItalyDipartimento Interateneo di Fisica, Università Degli Studi di Bari and INFN, Sezione di Bari, Via Amendola 173, 70126 Bari, ItalyWe investigate a two-dimensional system of active Brownian dumbbells using molecular dynamics simulations. In this model, each dumbbell is driven by an active force oriented perpendicular to the axis connecting its two constituent beads. We characterize the resulting phase behavior and find that, across all values of activity, the system undergoes phase separation between dilute and dense phases. The dense phase exhibits hexatic order, and for large enough activity, we observe a marked increase in local polarization, with dumbbells predominantly oriented towards the interior of the clusters. Compared to the case of axially self-propelled dumbbells, we find that the binodal region is enlarged towards lower densities at all activities. This shift arises because dumbbells with transverse propulsion can more easily form stable cluster cores, serving as nucleation seeds, and show a highly suppressed escaping rate from the cluster boundary. Finally, we observe that clusters exhibit spontaneous rotation, with the modulus of the angular velocity scaling as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ω</mi><mo>∼</mo><msubsup><mi>r</mi><mi>g</mi><mrow><mo>−</mo><mn>2</mn></mrow></msubsup></mrow></semantics></math></inline-formula>, where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>r</mi><mi>g</mi></msub></semantics></math></inline-formula> is the cluster’s radius of gyration. This contrasts with axially propelled dumbbells, where the scaling follows <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>ω</mi><mo>∼</mo><msubsup><mi>r</mi><mi>g</mi><mrow><mo>−</mo><mn>1</mn></mrow></msubsup></mrow></semantics></math></inline-formula>. We develop a simplified analytical model to rationalize this scaling behavior.https://www.mdpi.com/1099-4300/27/7/692active matterself-propelled dumbbellsphase diagrammotility-induced phase separation
spellingShingle Pasquale Digregorio
Claudio Basilio Caporusso
Lucio Mauro Carenza
Giuseppe Gonnella
Daniela Moretti
Giuseppe Negro
Massimiliano Semeraro
Antonio Suma
Transverse Self-Propulsion Enhances the Aggregation of Active Dumbbells
Entropy
active matter
self-propelled dumbbells
phase diagram
motility-induced phase separation
title Transverse Self-Propulsion Enhances the Aggregation of Active Dumbbells
title_full Transverse Self-Propulsion Enhances the Aggregation of Active Dumbbells
title_fullStr Transverse Self-Propulsion Enhances the Aggregation of Active Dumbbells
title_full_unstemmed Transverse Self-Propulsion Enhances the Aggregation of Active Dumbbells
title_short Transverse Self-Propulsion Enhances the Aggregation of Active Dumbbells
title_sort transverse self propulsion enhances the aggregation of active dumbbells
topic active matter
self-propelled dumbbells
phase diagram
motility-induced phase separation
url https://www.mdpi.com/1099-4300/27/7/692
work_keys_str_mv AT pasqualedigregorio transverseselfpropulsionenhancestheaggregationofactivedumbbells
AT claudiobasiliocaporusso transverseselfpropulsionenhancestheaggregationofactivedumbbells
AT luciomaurocarenza transverseselfpropulsionenhancestheaggregationofactivedumbbells
AT giuseppegonnella transverseselfpropulsionenhancestheaggregationofactivedumbbells
AT danielamoretti transverseselfpropulsionenhancestheaggregationofactivedumbbells
AT giuseppenegro transverseselfpropulsionenhancestheaggregationofactivedumbbells
AT massimilianosemeraro transverseselfpropulsionenhancestheaggregationofactivedumbbells
AT antoniosuma transverseselfpropulsionenhancestheaggregationofactivedumbbells