Configuration of the Earth’s Magnetotail Current Sheet

Abstract The spatial scale and intensity of Earth’s magnetotail current sheet determine the magnetotail configuration, which is critical to one of the most energetically powerful phenomena in the Earth’s magnetosphere, substorms. In the absence of statistical information about plasma currents, theor...

Full description

Saved in:
Bibliographic Details
Main Authors: Anton Artemyev, San Lu, Mostafa El‐Alaoui, Yu Lin, Vassilis Angelopoulos, Xiao‐Jia Zhang, Andrei Runov, Ivan Vasko, Lev Zelenyi, Christopher Russell
Format: Article
Language:English
Published: Wiley 2021-03-01
Series:Geophysical Research Letters
Subjects:
Online Access:https://doi.org/10.1029/2020GL092153
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract The spatial scale and intensity of Earth’s magnetotail current sheet determine the magnetotail configuration, which is critical to one of the most energetically powerful phenomena in the Earth’s magnetosphere, substorms. In the absence of statistical information about plasma currents, theories of the magnetotail current sheets were mostly based on the isotropic stress balance. Such models suggest that thin current sheets cannot be long and should have strong plasma pressure gradients along the magnetotail. Using Magnetospheric Multiscale and THEMIS observations and global simulations, we explore realistic configuration of the magnetotail current sheet. We find that the magnetotail current sheet is thinner than expected from theories that assume isotropic stress balance. Observed plasma pressure gradients in thin current sheets are insufficiently strong (i.e., current sheets are too long) to balance the magnetic field line tension force. Therefore, pressure anisotropy is essential in the configuration of thin current sheets where instability precedes substorm onset.
ISSN:0094-8276
1944-8007