Deformation Reconstruction and High-Precision Attitude Control of a Launch Vehicle Based on Strain Measurements

The development of launch vehicles has led to higher slenderness ratios and higher structural efficiencies, and the traditional control methods have difficulty in meeting high-quality control requirements. In this paper, an incremental dynamic inversion control method based on deformation reconstruc...

Full description

Saved in:
Bibliographic Details
Main Authors: Liang Zhuang, Zhang Yulin
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:International Journal of Aerospace Engineering
Online Access:http://dx.doi.org/10.1155/2021/6672943
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The development of launch vehicles has led to higher slenderness ratios and higher structural efficiencies, and the traditional control methods have difficulty in meeting high-quality control requirements. In this paper, an incremental dynamic inversion control method based on deformation reconstruction is proposed to achieve high-precision attitude control of slender launch vehicles. First, the deformation parameters of a flexible rocket are obtained via fiber Bragg grating (FBG) sensors. The deformation and attitude information is introduced into the incremental dynamic inverse control loop, and an attitude control framework that can alleviate bending vibration and deformation is established. The simulation results showed that the proposed method could accurately reconstruct the shapes of flexible launch vehicles with severe vibration and deformation, which could improve the accuracy and stability of attitude control.
ISSN:1687-5966
1687-5974