Modeling Information Diffusion on Social Media: The Role of the Saturation Effect

In an era where social media shapes public opinion, understanding information spreading is key to grasping its broader impact. This paper explores the intricacies of information diffusion on Twitter, emphasizing the significant influence of content saturation on user engagement and retweet behaviors...

Full description

Saved in:
Bibliographic Details
Main Authors: Julia Atienza-Barthelemy, Juan C. Losada, Rosa M. Benito
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/6/963
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850280563422789632
author Julia Atienza-Barthelemy
Juan C. Losada
Rosa M. Benito
author_facet Julia Atienza-Barthelemy
Juan C. Losada
Rosa M. Benito
author_sort Julia Atienza-Barthelemy
collection DOAJ
description In an era where social media shapes public opinion, understanding information spreading is key to grasping its broader impact. This paper explores the intricacies of information diffusion on Twitter, emphasizing the significant influence of content saturation on user engagement and retweet behaviors. We introduce a diffusion model that quantifies the likelihood of retweeting relative to the number of accounts a user follows. Our findings reveal a significant negative correlation where users following many accounts are less likely to retweet, suggesting a saturation effect in which exposure to information overload reduces engagement. We validate our model through simulations, demonstrating its ability to replicate real-world retweet network characteristics, including diffusion size and structural properties. Additionally, we explore this saturation effect on the temporal behavior of retweets, revealing that retweet intervals follow a stretched exponential distribution, which better captures the gradual decline in engagement over time. Our results underscore the competitive nature of information diffusion in social networks, where tweets have short lifespans and are quickly replaced by new information. This study contributes to a deeper understanding of content propagation mechanisms, offering a model with broad applicability across contexts, and highlights the importance of information overload in structural and temporal social media dynamics.
format Article
id doaj-art-983c68fb4b06488a96cf2ddbb81f2e31
institution OA Journals
issn 2227-7390
language English
publishDate 2025-03-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-983c68fb4b06488a96cf2ddbb81f2e312025-08-20T01:48:41ZengMDPI AGMathematics2227-73902025-03-0113696310.3390/math13060963Modeling Information Diffusion on Social Media: The Role of the Saturation EffectJulia Atienza-Barthelemy0Juan C. Losada1Rosa M. Benito2Grupo de Sistemas Complejos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro, 2, 28040 Madrid, SpainGrupo de Sistemas Complejos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro, 2, 28040 Madrid, SpainGrupo de Sistemas Complejos, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Av. Puerta de Hierro, 2, 28040 Madrid, SpainIn an era where social media shapes public opinion, understanding information spreading is key to grasping its broader impact. This paper explores the intricacies of information diffusion on Twitter, emphasizing the significant influence of content saturation on user engagement and retweet behaviors. We introduce a diffusion model that quantifies the likelihood of retweeting relative to the number of accounts a user follows. Our findings reveal a significant negative correlation where users following many accounts are less likely to retweet, suggesting a saturation effect in which exposure to information overload reduces engagement. We validate our model through simulations, demonstrating its ability to replicate real-world retweet network characteristics, including diffusion size and structural properties. Additionally, we explore this saturation effect on the temporal behavior of retweets, revealing that retweet intervals follow a stretched exponential distribution, which better captures the gradual decline in engagement over time. Our results underscore the competitive nature of information diffusion in social networks, where tweets have short lifespans and are quickly replaced by new information. This study contributes to a deeper understanding of content propagation mechanisms, offering a model with broad applicability across contexts, and highlights the importance of information overload in structural and temporal social media dynamics.https://www.mdpi.com/2227-7390/13/6/963social mediaTwittersaturationinformation diffusiondiffusion model
spellingShingle Julia Atienza-Barthelemy
Juan C. Losada
Rosa M. Benito
Modeling Information Diffusion on Social Media: The Role of the Saturation Effect
Mathematics
social media
Twitter
saturation
information diffusion
diffusion model
title Modeling Information Diffusion on Social Media: The Role of the Saturation Effect
title_full Modeling Information Diffusion on Social Media: The Role of the Saturation Effect
title_fullStr Modeling Information Diffusion on Social Media: The Role of the Saturation Effect
title_full_unstemmed Modeling Information Diffusion on Social Media: The Role of the Saturation Effect
title_short Modeling Information Diffusion on Social Media: The Role of the Saturation Effect
title_sort modeling information diffusion on social media the role of the saturation effect
topic social media
Twitter
saturation
information diffusion
diffusion model
url https://www.mdpi.com/2227-7390/13/6/963
work_keys_str_mv AT juliaatienzabarthelemy modelinginformationdiffusiononsocialmediatheroleofthesaturationeffect
AT juanclosada modelinginformationdiffusiononsocialmediatheroleofthesaturationeffect
AT rosambenito modelinginformationdiffusiononsocialmediatheroleofthesaturationeffect