Multiobjective TOU Pricing Optimization Based on NSGA2
Fast and elitist nondominated sorting generic algorithm (NSGA2) is an improved multiobjective genetic algorithm with good convergence and robustness. The Pareto optimal solution set using NSGA2 has the character of uniform distribution. This paper builds a time-of-use (TOU) pricing mathematical mode...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2014-01-01
|
| Series: | Journal of Applied Mathematics |
| Online Access: | http://dx.doi.org/10.1155/2014/104518 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Fast and elitist nondominated sorting generic algorithm (NSGA2) is an improved multiobjective genetic algorithm with good convergence and robustness. The Pareto optimal solution set using NSGA2 has the character of uniform distribution. This paper builds a time-of-use (TOU) pricing mathematical model considering actual constraint conditions and puts forward a new method which realizes multiobjective TOU pricing optimization using NSGA2. A variety of objective TOU pricing schemes can be provided for decision makers compared with traditional method. Furthermore, the multiple attribute decision making theory is applied in processing the Pareto optimal solution set to calculate the optimal compromise price scheme. The simulation results have shown that the TOU pricing scheme determined by the method proposed above can achieve a better effect of clipping the peak load to fill the valley load. Consequently, the study in this paper is innovative and is a successful exploration of coordinating the relation of various objective functions concerned in TOU pricing optimization problem. |
|---|---|
| ISSN: | 1110-757X 1687-0042 |