Weight-based multi-stream model for Multi-Modal Video Question Answering

There has been a tremendous success in individual domains of Computer Vision, Natural Language Processing, and Knowledge Representation. Videos are a rich source of information with the multi-modal data forms of images, audio, and optionally subtitles blended. Current research is going on in combini...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohith Rajesh, Sanjiv Sridhar, Chinmay Kulkarni, Aaditya Shah, Natarajan S
Format: Article
Language:English
Published: LibraryPress@UF 2023-05-01
Series:Proceedings of the International Florida Artificial Intelligence Research Society Conference
Subjects:
Online Access:https://journals.flvc.org/FLAIRS/article/view/133306
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:There has been a tremendous success in individual domains of Computer Vision, Natural Language Processing, and Knowledge Representation. Videos are a rich source of information with the multi-modal data forms of images, audio, and optionally subtitles blended. Current research is going on in combining these individual domains which have given rise to topics such as image captioning, visual question answering, and video question answering. Video Question Answering is a model which combines research topics like object detection and recognition, temporal information processing, visual attention, and natural language processing. In this paper, we propose a model with Attention Mechanism for Video Question Answering that assigns varying weights to the many pieces of information the video encompasses. The model combines the question with 3 streams i.e., video's frames, subtitles, and objects to get the most probable answer. The model also receives the set of answer candidates as input and predicts one of them as the most probable answer since it has been trained and tested on the TVQA dataset.
ISSN:2334-0754
2334-0762