TREM1—Microglia crosstalk: Neurocognitive disorders

Neurocognitive Disorders (NCDs) primarily affect cognitive functions, including learning, memory, perception, and problem-solving. They predominantly arise as pathological sequelae of central nervous system (CNS) disorders. Emerging evidence suggests that microglial inflammatory activation within th...

Full description

Saved in:
Bibliographic Details
Main Authors: Huashan Li, Wanqiu Yu, Xue Zheng, Zhaoqiong Zhu
Format: Article
Language:English
Published: Elsevier 2025-01-01
Series:Brain Research Bulletin
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S036192302400296X
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neurocognitive Disorders (NCDs) primarily affect cognitive functions, including learning, memory, perception, and problem-solving. They predominantly arise as pathological sequelae of central nervous system (CNS) disorders. Emerging evidence suggests that microglial inflammatory activation within the hippocampus underlies the pathogenesis of cognitive impairment. Triggering receptor expressed on myeloid cells 1 (TREM1), a pattern-recognition receptor on microglia, becomes upregulated in response to injury and synergistically amplifies inflammatory responses mediated by other pattern-recognition receptors, leading to uncontrolled inflammation. While TREM1 is lowly expressed in the resting state, its upregulation upon exposure to injurious inflammatory stimuli promotes microglial activation and contributes to the development of NCDs. Consequently, TREM1 may serve as a critical receptor in microglia-mediated inflammation. This article reviews the current understanding of TREM1 and its role in NCDs pathogenesis.
ISSN:1873-2747