Nickel Stabilized Si/Ni/Si/Ni Multi-Layer Thin-Film Anode for Long-Cycling-Life Lithium-Ion Battery
Silicon-based anodes suffer from the loss of physical integrity due to large volume changes during alloying and de-alloying processes with electrolytes. By integrating electrochemically inert, physically strong, ductile nickel layers with a multi-layered thin-film silicon anode, the long-life cyclin...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-01-01
|
| Series: | Batteries |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2313-0105/11/2/46 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Silicon-based anodes suffer from the loss of physical integrity due to large volume changes during alloying and de-alloying processes with electrolytes. By integrating electrochemically inert, physically strong, ductile nickel layers with a multi-layered thin-film silicon anode, the long-life cycling of the Si/Ni/Si/Ni anode was demonstrated. A capacity retention of 82% after 200 cycles was measured, surpassing the performance of conventional silicon thin-film anodes. This is attributed to the effective suppression of internal local stress induced by nonuniform volume expansion by the nickel layers. These findings offer a promising pathway towards the practical implementation of high-capacity silicon-based anodes in advanced lithium-ion batteries. |
|---|---|
| ISSN: | 2313-0105 |