Investigation of Nano-Composite Dampers Using Different Nanomaterials in Civil Engineering Structures: A Review

Civil engineering structures need to be protected from earthquakes, representing a new area of research that is growing continuously and very rapidly. Design engineers are always searching for lightweight, stronger, and stiffer materials to be applied as vibration-damping materials. Stability in dyn...

Full description

Saved in:
Bibliographic Details
Main Authors: Sandhya. R. Jalgar, Anand M. Hunashyal, Roopa A. Kuri, Madhumati. S. Dhaduti, Shridhar N. Mathad
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Engineering Proceedings
Subjects:
Online Access:https://www.mdpi.com/2673-4591/59/1/188
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Civil engineering structures need to be protected from earthquakes, representing a new area of research that is growing continuously and very rapidly. Design engineers are always searching for lightweight, stronger, and stiffer materials to be applied as vibration-damping materials. Stability in dynamics necessitates an active, robust, and convenient mechanism that can absorb the kinetic energy of vibration to prevent the structural system from resonance. Recently, many researchers have successfully used nanomaterials to develop energy-absorbing materials that are lightweight and cost-effective. Traditional damping treatments are based on combinations of viscoelastic, elastomeric, magnetic, and piezoelectric materials. In this paper, a review of various damping techniques for composites made of cement modified by various nanomaterials like Nano Al2O<sub>3</sub> (Aluminum Dioxide), Nano SiO<sub>2</sub> (Silicon Dioxide), Nano TiO<sub>2</sub> (Titanium Dioxide), Graphene, and CNTs (Carbon Nanotubes) is presented. The designs of various nano-composite dampers are presented to strengthen the information progress in this field. The current study’s goal is to discover how nanoparticles impact the cement-based material’s damping properties. The study examined several nanomaterials in cement composites at differing concentrations. With the help of the Dynamic Mechanical Analysis (DMA) method and the Logarithmic Decrement approach, the damping properties of these composites were examined. Scanning Electron Microscopy (SEM) was used to examine the effects of nanomaterials on the microstructure and pore size distribution of the composite. Increasing the quantity of nanoparticles in cement paste may improve its capacity to lessen vibration. The experiments also showed that certain nanomaterials may improve load transmission inside the cement matrix and connect neighboring hydration products, helping to reduce energy loss during the loading process. These nanoparticles will eventually replace the large machinery employed to dampen vibrations in buildings due to their small weight, increased mechanical strength, and effective damping properties.
ISSN:2673-4591