Intensification of Azo Dye Removal Rate in the Presence of Immobilized Nanoparticles and Inorganic Anions under UV-C Irradiation: Optimization by Response Surface Methodology

Wastewaters contain inorganic anions that affect the removal rate of organic pollutants. The present study aims to optimize the effects of inorganic anions such as , Cl−, , and on the removal rate of an organic pollutant in the presence of immobilized TiO2 nanoparticles using response surface meth...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohammad A. Behnajady, Mahsa Hajiahmadi
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:International Journal of Photoenergy
Online Access:http://dx.doi.org/10.1155/2013/289290
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wastewaters contain inorganic anions that affect the removal rate of organic pollutants. The present study aims to optimize the effects of inorganic anions such as , Cl−, , and on the removal rate of an organic pollutant in the presence of immobilized TiO2 nanoparticles using response surface methodology (RSM). C.I. Acid Red 17 (AR17) was used as a model organic pollutant. Thirty experiments were required to study the effects of anions in various concentrations. The results indicate that the addition of and ions intensifies the removal rate of AR17. The results of the analysis of variance (ANOVA) showed a high coefficient of determination value ( and ). The results indicate that RSM is a suitable method for modeling and optimizing the process. The results prove that in the presence of and and ions especially in the combination situation the removal rate of AR17 is enhanced considerably. An important synergy effect was observed in the combination of and ions, so that AR17 removal percent under the optimized RSM conditions was considerably more than the sum of removal percent when these ions are used individually.
ISSN:1110-662X
1687-529X