Predicting pediatric age from chest X-rays using deep learning: a novel approach

Abstract Objectives Accurate age estimation is essential for assessing pediatric developmental stages and for forensics. Conventionally, pediatric age is clinically estimated by bone age through wrist X-rays. However, recent advances in deep learning enable other radiological modalities to serve as...

Full description

Saved in:
Bibliographic Details
Main Authors: Maolin Li, Jiang Zhao, Huanhuan Liu, Biao Jin, Xuee Cui, Dengbin Wang
Format: Article
Language:English
Published: SpringerOpen 2025-08-01
Series:Insights into Imaging
Subjects:
Online Access:https://doi.org/10.1186/s13244-025-02068-5
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Objectives Accurate age estimation is essential for assessing pediatric developmental stages and for forensics. Conventionally, pediatric age is clinically estimated by bone age through wrist X-rays. However, recent advances in deep learning enable other radiological modalities to serve as a promising complement. This study aims to explore the effectiveness of deep learning for pediatric age estimation using chest X-rays. Materials and methods We developed a ResNet-based deep neural network model enhanced with Coordinate Attention mechanism to predict pediatric age from chest X-rays. A dataset comprising 128,008 images was retrospectively collected from two large tertiary hospitals in Shanghai. Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) were employed as main evaluation metrics across age groups. Further analysis was conducted using Spearman correlation and heatmap visualizations. Results The model achieved an MAE of 5.86 months for males and 5.80 months for females on the internal validation set. On the external test set, the MAE was 7.40 months for males and 7.29 months for females. The Spearman correlation coefficient was above 0.98, indicating a strong positive correlation between the predicted and true age. Heatmap analysis revealed the deep learning model mainly focused on the spine, mediastinum, heart and great vessels, with additional attention given to surrounding bones. Conclusions We successfully constructed a large dataset of pediatric chest X-rays and developed a neural network model integrated with Coordinate Attention for age prediction. Experiments demonstrated the model’s robustness and proved that chest X-rays can be effectively utilized for accurate pediatric age estimation. Critical relevance statement By integrating pediatric chest X-rays with age data using deep learning, we can provide more support for predicting children’s age, thereby aiding in the screening of abnormal growth and development in children. Key Points This study explores whether deep learning could leverage chest X-rays for pediatric age prediction. Trained on over 120,000 images, the model shows high accuracy on internal and external validation sets. This method provides a potential complement for traditional bone age assessment and could reduce radiation exposure. Graphical Abstract
ISSN:1869-4101