Identifying High-Risk Workspaces during COVID-19 using Machine Learning

The COVID-19 pandemic has wreaked havoc worldwide, on both public health and the worldwide economy. While necessary, quarantine and social distancing requirements have left many companies unable to reopen their offices in a safe manner. We present a model capable of identifying workspaces at high ri...

Full description

Saved in:
Bibliographic Details
Main Authors: Lex Drennan, Matthew Chesser, Jorge Lozano, Erin Carrier
Format: Article
Language:English
Published: LibraryPress@UF 2021-04-01
Series:Proceedings of the International Florida Artificial Intelligence Research Society Conference
Subjects:
Online Access:https://journals.flvc.org/FLAIRS/article/view/128484
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The COVID-19 pandemic has wreaked havoc worldwide, on both public health and the worldwide economy. While necessary, quarantine and social distancing requirements have left many companies unable to reopen their offices in a safe manner. We present a model capable of identifying workspaces at high risk for COVID-19 disease transmission and illustrate how existing techniques for quantifying uncertainty in machine learning can be applied to assess the reliability of these predictions. This model is developed using a dataset created by leveraging historical sales data and detailed product information, and it is in the process of being utilized to identify customers to whom to reach out to facilitate the retrofitting of workspaces to support a safe return to the office.
ISSN:2334-0754
2334-0762