Novel Pt@PCN-Cu-induced cuproptosis amplifies αPD-L1 immunotherapy in pancreatic ductal adenocarcinoma through mitochondrial HK2-mediated PD-L1 upregulation
Abstract Background Copper accumulation triggers mitochondrial-driven cell death, known as cuproptosis, offering a promising mechanism for targeted cancer therapy. Recent studies have highlighted the critical role of intratumoral copper levels in regulating the expression of programmed cell death li...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
BMC
2025-05-01
|
| Series: | Journal of Experimental & Clinical Cancer Research |
| Subjects: | |
| Online Access: | https://doi.org/10.1186/s13046-025-03409-4 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Background Copper accumulation triggers mitochondrial-driven cell death, known as cuproptosis, offering a promising mechanism for targeted cancer therapy. Recent studies have highlighted the critical role of intratumoral copper levels in regulating the expression of programmed cell death ligand-1 (PD-L1), suggesting that copper-induced cuproptosis not only enhances cancer cell death but may also amplify the effects of anti-PD-L1 antibodies (αPD-L1). However, in tumors where monotherapy with αPD-L1 shows limited efficacy, particularly in pancreatic ductal adenocarcinoma (PDAC), the role of copper-induced cuproptosis in enhancing αPD-L1 treatment efficacy and its underlying mechanisms remain unclear. Meanwhile, inadequate tumor drug accumulation and glycolysis significantly restrict the efficacy of cuproptosis. To address these challenges, we have synthesized a novel nanozyme, Pt@PCN-Cu, designed to stabilize intracellular copper accumulation and effectively induce cuproptosis. Additionally, we aim to determine whether this strong induction of cuproptosis can synergize with αPD-L1 to enhance cancer therapy, ultimately paving the way for novel strategies to improve PDAC treatment. Methods Pt@PCN-Cu was synthesized via a one-pot method, and its therapeutic potential was assessed in combination with αPD-L1 for the treatment of PDAC. Initially, the material’s properties were characterized, and its efficient cellular uptake was confirmed. Anti-tumor efficacy was evaluated by inducing cuproptosis in PDAC cell lines and xenograft models. RNA sequencing (RNA-seq) was utilized to identify key regulators involved in the modulation of PD-L1 expression by cuproptosis. Lastly, the therapeutic efficacy of Pt@PCN-Cu combined with αPD-L1 was evaluated in vivo, focusing on tumor growth inhibition and immune modulation within the tumor microenvironment (TME). Results Pt@PCN-Cu demonstrates excellent physicochemical properties and remarkable cascade catalytic activity, providing a solid foundation for further in vitro and in vivo studies. In vitro, Pt@PCN-Cu efficiently transports copper and induces cuproptosis primarily through mitochondrial dysfunction. Mechanistic studies show that Pt@PCN-Cu triggers the dissociation of hexokinase 2 (HK2) from mitochondria, leading to a reduction in HK2 activity. This decline in HK2 activity impairs glycolysis, a metabolic pathway essential for tumor energy metabolism, which in turn results in elevated PD-L1 levels. In vivo, Pt@PCN-Cu demonstrates excellent safety and accumulates at the tumor site in a subcutaneous PDAC mouse model, inducing cuproptosis. Moreover, the combination of Pt@PCN-Cu with αPD-L1 further enhanced its therapeutic efficacy and effectively reprogrammed the immunosuppressive TME. Conclusion This study presents strong evidence confirming the safety and therapeutic potential of Pt@PCN-Cu in PDAC treatment. Importantly, Pt@PCN-Cu not only induces cuproptosis but also significantly enhances antitumor efficacy in combination with αPD-L1 by regulating PD-L1 expression through HK2 modulation. These findings underscore a more effective and innovative approach for treating PDAC. |
|---|---|
| ISSN: | 1756-9966 |