Random Volumetric MRI Trajectories via Genetic Algorithms
A pseudorandom, velocity-insensitive, volumetric k-space sampling trajectory is designed for use with balanced steady-state magnetic resonance imaging. Individual arcs are designed independently and do not fit together in the way that multishot spiral, radial or echo-planar trajectories do. Previous...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2008-01-01
|
| Series: | International Journal of Biomedical Imaging |
| Online Access: | http://dx.doi.org/10.1155/2008/297089 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850209944358354944 |
|---|---|
| author | Andrew Thomas Curtis Christopher Kumar Anand |
| author_facet | Andrew Thomas Curtis Christopher Kumar Anand |
| author_sort | Andrew Thomas Curtis |
| collection | DOAJ |
| description | A pseudorandom, velocity-insensitive, volumetric k-space sampling trajectory is designed for use with balanced steady-state magnetic resonance imaging. Individual arcs are designed independently and do not fit together in the way that multishot spiral, radial or echo-planar trajectories do. Previously, it was shown that second-order cone optimization problems can be defined for each arc independent of the others, that nulling of zeroth and higher moments can be encoded as constraints, and that individual arcs can be optimized in seconds. For use in steady-state imaging, sampling duty cycles are predicted to exceed 95 percent. Using such pseudorandom trajectories, aliasing caused by under-sampling manifests itself as incoherent noise. In this paper, a genetic algorithm (GA) is formulated and numerically evaluated. A large set of arcs is designed using previous methods, and the GA choses particular fit subsets of a given size, corresponding to a desired acquisition time. Numerical simulations of 1 second acquisitions show good detail and acceptable noise for large-volume imaging with 32 coils. |
| format | Article |
| id | doaj-art-96bcb730c78a46cb8944bb3b7358597f |
| institution | OA Journals |
| issn | 1687-4188 1687-4196 |
| language | English |
| publishDate | 2008-01-01 |
| publisher | Wiley |
| record_format | Article |
| series | International Journal of Biomedical Imaging |
| spelling | doaj-art-96bcb730c78a46cb8944bb3b7358597f2025-08-20T02:09:52ZengWileyInternational Journal of Biomedical Imaging1687-41881687-41962008-01-01200810.1155/2008/297089297089Random Volumetric MRI Trajectories via Genetic AlgorithmsAndrew Thomas Curtis0Christopher Kumar Anand1Department of Medical Biophysics, The University of Western Ontario, London, ON, N6A 5C1, CanadaDepartment of Computing and Software, McMaster University, Hamilton, ON, L8S 4K1, CanadaA pseudorandom, velocity-insensitive, volumetric k-space sampling trajectory is designed for use with balanced steady-state magnetic resonance imaging. Individual arcs are designed independently and do not fit together in the way that multishot spiral, radial or echo-planar trajectories do. Previously, it was shown that second-order cone optimization problems can be defined for each arc independent of the others, that nulling of zeroth and higher moments can be encoded as constraints, and that individual arcs can be optimized in seconds. For use in steady-state imaging, sampling duty cycles are predicted to exceed 95 percent. Using such pseudorandom trajectories, aliasing caused by under-sampling manifests itself as incoherent noise. In this paper, a genetic algorithm (GA) is formulated and numerically evaluated. A large set of arcs is designed using previous methods, and the GA choses particular fit subsets of a given size, corresponding to a desired acquisition time. Numerical simulations of 1 second acquisitions show good detail and acceptable noise for large-volume imaging with 32 coils.http://dx.doi.org/10.1155/2008/297089 |
| spellingShingle | Andrew Thomas Curtis Christopher Kumar Anand Random Volumetric MRI Trajectories via Genetic Algorithms International Journal of Biomedical Imaging |
| title | Random Volumetric MRI Trajectories via Genetic Algorithms |
| title_full | Random Volumetric MRI Trajectories via Genetic Algorithms |
| title_fullStr | Random Volumetric MRI Trajectories via Genetic Algorithms |
| title_full_unstemmed | Random Volumetric MRI Trajectories via Genetic Algorithms |
| title_short | Random Volumetric MRI Trajectories via Genetic Algorithms |
| title_sort | random volumetric mri trajectories via genetic algorithms |
| url | http://dx.doi.org/10.1155/2008/297089 |
| work_keys_str_mv | AT andrewthomascurtis randomvolumetricmritrajectoriesviageneticalgorithms AT christopherkumaranand randomvolumetricmritrajectoriesviageneticalgorithms |