Scattering in the Energy Space for Solutions of the Damped Nonlinear Schrödinger Equation on <inline-formula><math display="inline"><semantics><mrow><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mi>d</mi></msup><mo>×</mo><mi mathvariant="double-struck">T</mi></mrow></semantics></math></inline-formula>

We will show, in any space dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo>≥</mo><mn>3</mn></mrow></semantics></math></inlin...

Full description

Saved in:
Bibliographic Details
Main Authors: Taim Saker, Mirko Tarulli, George Venkov
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/6/447
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849418217599008768
author Taim Saker
Mirko Tarulli
George Venkov
author_facet Taim Saker
Mirko Tarulli
George Venkov
author_sort Taim Saker
collection DOAJ
description We will show, in any space dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo>≥</mo><mn>3</mn></mrow></semantics></math></inline-formula>, the decay and scattering in the energy space for the solution to the damped nonlinear Schrödinger equation posed on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mi>d</mi></msup><mo>×</mo><mi mathvariant="double-struck">T</mi></mrow></semantics></math></inline-formula> and initial data in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>H</mi><mn>1</mn></msup><mrow><mo>(</mo><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mi>d</mi></msup><mo>×</mo><mi mathvariant="double-struck">T</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. We will also derive new bilinear Morawetz identities and corresponding localized Morawetz estimates.
format Article
id doaj-art-967538e6fe4a466d99781a2adfef87f6
institution Kabale University
issn 2075-1680
language English
publishDate 2025-06-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-967538e6fe4a466d99781a2adfef87f62025-08-20T03:32:31ZengMDPI AGAxioms2075-16802025-06-0114644710.3390/axioms14060447Scattering in the Energy Space for Solutions of the Damped Nonlinear Schrödinger Equation on <inline-formula><math display="inline"><semantics><mrow><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mi>d</mi></msup><mo>×</mo><mi mathvariant="double-struck">T</mi></mrow></semantics></math></inline-formula>Taim Saker0Mirko Tarulli1George Venkov2Institute of Mathematics and Informatics, Bulgarian Academy of Science, Acad. Georgi Bonchev Str., Block 8, 1113 Sofia, BulgariaInstitute of Mathematics and Informatics, Bulgarian Academy of Science, Acad. Georgi Bonchev Str., Block 8, 1113 Sofia, BulgariaDepartment of Mathematical Analysis and Differential Equations, Faculty of Applied Mathematics and Informatics, Technical University of Sofia, 1756 Sofia, BulgariaWe will show, in any space dimension <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>d</mi><mo>≥</mo><mn>3</mn></mrow></semantics></math></inline-formula>, the decay and scattering in the energy space for the solution to the damped nonlinear Schrödinger equation posed on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mi>d</mi></msup><mo>×</mo><mi mathvariant="double-struck">T</mi></mrow></semantics></math></inline-formula> and initial data in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>H</mi><mn>1</mn></msup><mrow><mo>(</mo><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mi>d</mi></msup><mo>×</mo><mi mathvariant="double-struck">T</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. We will also derive new bilinear Morawetz identities and corresponding localized Morawetz estimates.https://www.mdpi.com/2075-1680/14/6/447nonlinear Schrödinger equationsSchrödinger operatorsscattering theorylocal nonlinearitydamping
spellingShingle Taim Saker
Mirko Tarulli
George Venkov
Scattering in the Energy Space for Solutions of the Damped Nonlinear Schrödinger Equation on <inline-formula><math display="inline"><semantics><mrow><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mi>d</mi></msup><mo>×</mo><mi mathvariant="double-struck">T</mi></mrow></semantics></math></inline-formula>
Axioms
nonlinear Schrödinger equations
Schrödinger operators
scattering theory
local nonlinearity
damping
title Scattering in the Energy Space for Solutions of the Damped Nonlinear Schrödinger Equation on <inline-formula><math display="inline"><semantics><mrow><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mi>d</mi></msup><mo>×</mo><mi mathvariant="double-struck">T</mi></mrow></semantics></math></inline-formula>
title_full Scattering in the Energy Space for Solutions of the Damped Nonlinear Schrödinger Equation on <inline-formula><math display="inline"><semantics><mrow><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mi>d</mi></msup><mo>×</mo><mi mathvariant="double-struck">T</mi></mrow></semantics></math></inline-formula>
title_fullStr Scattering in the Energy Space for Solutions of the Damped Nonlinear Schrödinger Equation on <inline-formula><math display="inline"><semantics><mrow><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mi>d</mi></msup><mo>×</mo><mi mathvariant="double-struck">T</mi></mrow></semantics></math></inline-formula>
title_full_unstemmed Scattering in the Energy Space for Solutions of the Damped Nonlinear Schrödinger Equation on <inline-formula><math display="inline"><semantics><mrow><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mi>d</mi></msup><mo>×</mo><mi mathvariant="double-struck">T</mi></mrow></semantics></math></inline-formula>
title_short Scattering in the Energy Space for Solutions of the Damped Nonlinear Schrödinger Equation on <inline-formula><math display="inline"><semantics><mrow><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mi>d</mi></msup><mo>×</mo><mi mathvariant="double-struck">T</mi></mrow></semantics></math></inline-formula>
title_sort scattering in the energy space for solutions of the damped nonlinear schrodinger equation on inline formula math display inline semantics mrow msup mrow mi mathvariant double struck r mi mrow mi d mi msup mo mo mi mathvariant double struck t mi mrow semantics math inline formula
topic nonlinear Schrödinger equations
Schrödinger operators
scattering theory
local nonlinearity
damping
url https://www.mdpi.com/2075-1680/14/6/447
work_keys_str_mv AT taimsaker scatteringintheenergyspaceforsolutionsofthedampednonlinearschrodingerequationoninlineformulamathdisplayinlinesemanticsmrowmsupmrowmimathvariantdoublestruckrmimrowmidmimsupmomomimathvariantdoublestrucktmimrowsemanticsmathinlineformula
AT mirkotarulli scatteringintheenergyspaceforsolutionsofthedampednonlinearschrodingerequationoninlineformulamathdisplayinlinesemanticsmrowmsupmrowmimathvariantdoublestruckrmimrowmidmimsupmomomimathvariantdoublestrucktmimrowsemanticsmathinlineformula
AT georgevenkov scatteringintheenergyspaceforsolutionsofthedampednonlinearschrodingerequationoninlineformulamathdisplayinlinesemanticsmrowmsupmrowmimathvariantdoublestruckrmimrowmidmimsupmomomimathvariantdoublestrucktmimrowsemanticsmathinlineformula