Toward Inclusive Smart Cities: Sound-Based Vehicle Diagnostics, Emergency Signal Recognition, and Beyond

Sound-based early fault detection for vehicles is a critical yet underexplored area, particularly within Intelligent Transportation Systems (ITSs) for smart cities. Despite the clear necessity for sound-based diagnostic systems, the scarcity of specialized publicly available datasets presents a majo...

Full description

Saved in:
Bibliographic Details
Main Authors: Amr Rashed, Yousry Abdulazeem, Tamer Ahmed Farrag, Amna Bamaqa, Malik Almaliki, Mahmoud Badawy, Mostafa A. Elhosseini
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Machines
Subjects:
Online Access:https://www.mdpi.com/2075-1702/13/4/258
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sound-based early fault detection for vehicles is a critical yet underexplored area, particularly within Intelligent Transportation Systems (ITSs) for smart cities. Despite the clear necessity for sound-based diagnostic systems, the scarcity of specialized publicly available datasets presents a major challenge. This study addresses this gap by contributing in multiple dimensions. Firstly, it emphasizes the significance of sound-based diagnostics for real-time detection of faults through analyzing sounds directly generated by vehicles, such as engine or brake noises, and the classification of external emergency sounds, like sirens, relevant to vehicle safety. Secondly, this paper introduces a novel dataset encompassing vehicle fault sounds, emergency sirens, and environmental noises specifically curated to address the absence of such specialized datasets. A comprehensive framework is proposed, combining audio preprocessing, feature extraction (via Mel Spectrograms, MFCCs, and Chromatograms), and classification using 11 models. Evaluations using both compact (52 features) and expanded (126 features) representations show that several classes (e.g., Engine Misfire, Fuel Pump Cartridge Fault, Radiator Fan Failure) achieve near-perfect accuracy, though acoustically similar classes like Universal Joint Failure, Knocking, and Pre-ignition Problem remain challenging. Logistic Regression yielded the highest accuracy of 86.5% for the vehicle fault dataset (DB1) using compact features, while neural networks performed best for datasets DB2 and DB3, achieving 88.4% and 85.5%, respectively. In the second scenario, a Bayesian-Optimized Weighted Soft Voting with Feature Selection (BOWSVFS) approach is proposed, significantly enhancing accuracy to 91.04% for DB1, 88.85% for DB2, and 86.85% for DB3. These results highlight the effectiveness of the proposed methods in addressing key ITS limitations and enhancing accessibility for individuals with disabilities through auditory-based vehicle diagnostics and emergency recognition systems.
ISSN:2075-1702