Singularity Analysis of Lightlike Hypersurfaces Generated by Null Cartan Curves in Minkowski Spacetime

This study investigates the singularity structures of lightlike hypersurfaces generated by null Cartan curves in Minkowski spacetime. We construct a hierarchical geometric framework consisting of a lightlike hypersurface <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML&q...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoming Fan, Yongsheng Zhu, Haijing Pan
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/4/279
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates the singularity structures of lightlike hypersurfaces generated by null Cartan curves in Minkowski spacetime. We construct a hierarchical geometric framework consisting of a lightlike hypersurface <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><msub><mi>H</mi><mi mathvariant="bold-italic">β</mi></msub></mrow></semantics></math></inline-formula>, a critical lightlike surface <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><msub><mi>S</mi><mi mathvariant="bold-italic">β</mi></msub></mrow></semantics></math></inline-formula>, and a degenerate curve <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><msub><mi>C</mi><mi mathvariant="bold-italic">β</mi></msub></mrow></semantics></math></inline-formula>, with dimensions decreasing from 3D to 1D. Using singularity theory, we identify a novel geometric invariant <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>σ</mi><mo>(</mo><mi>t</mi><mo>)</mo></mrow></semantics></math></inline-formula> that governs the emergence of specific singularity types, including <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>)</mo></mrow><mo>×</mo><msup><mi mathvariant="double-struck">R</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>W</mi><mo>×</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>B</mi><mi>F</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mo>(</mo><mi>B</mi><mi>F</mi><mo>)</mo></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mo>(</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>)</mo><mo>×</mo><mi mathvariant="double-struck">R</mi></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>)</mo></mrow></semantics></math></inline-formula>-cusp. These singularities exhibit increasing degeneracy as the hierarchy progresses, with contact orders between the lightlike hyperplane <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>H</mi><msubsup><mi>S</mi><msub><mi>t</mi><mn>0</mn></msub><mi>L</mi></msubsup></mrow></semantics></math></inline-formula> and the curve <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="bold-italic">β</mi></semantics></math></inline-formula> systematically intensifying. An explicit example demonstrates the construction of these objects and validates the theoretical results. This work establishes a systematic connection between null Cartan curves, stratified singularities, and contact geometry.
ISSN:2075-1680