On q-Rung Orthopair Fuzzy Subgroups
The q-rung orthopair fuzzy environment is an innovative tool to handle uncertain situations in various decision-making problems. In this work, we characterize the idea of a q-rung orthopair fuzzy subgroup and examine various algebraic attributes of this newly defined notion. We also present q-rung o...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2022-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2022/8196638 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832554942302257152 |
---|---|
author | Asima Razzaque Abdul Razaq |
author_facet | Asima Razzaque Abdul Razaq |
author_sort | Asima Razzaque |
collection | DOAJ |
description | The q-rung orthopair fuzzy environment is an innovative tool to handle uncertain situations in various decision-making problems. In this work, we characterize the idea of a q-rung orthopair fuzzy subgroup and examine various algebraic attributes of this newly defined notion. We also present q-rung orthopair fuzzy coset and q-rung orthopair fuzzy normal subgroup along with relevant fundamental theorems. Moreover, we introduce the concept of q-rung orthopair fuzzy level subgroup and proved related results. At the end, we explore the consequence of group homomorphism on the q-rung orthopair fuzzy subgroup. |
format | Article |
id | doaj-art-964be55067ed4d82926e51ddca8ec0b6 |
institution | Kabale University |
issn | 2314-8888 |
language | English |
publishDate | 2022-01-01 |
publisher | Wiley |
record_format | Article |
series | Journal of Function Spaces |
spelling | doaj-art-964be55067ed4d82926e51ddca8ec0b62025-02-03T05:50:01ZengWileyJournal of Function Spaces2314-88882022-01-01202210.1155/2022/8196638On q-Rung Orthopair Fuzzy SubgroupsAsima Razzaque0Abdul Razaq1Department of Basic SciencesDepartment of MathematicsThe q-rung orthopair fuzzy environment is an innovative tool to handle uncertain situations in various decision-making problems. In this work, we characterize the idea of a q-rung orthopair fuzzy subgroup and examine various algebraic attributes of this newly defined notion. We also present q-rung orthopair fuzzy coset and q-rung orthopair fuzzy normal subgroup along with relevant fundamental theorems. Moreover, we introduce the concept of q-rung orthopair fuzzy level subgroup and proved related results. At the end, we explore the consequence of group homomorphism on the q-rung orthopair fuzzy subgroup.http://dx.doi.org/10.1155/2022/8196638 |
spellingShingle | Asima Razzaque Abdul Razaq On q-Rung Orthopair Fuzzy Subgroups Journal of Function Spaces |
title | On q-Rung Orthopair Fuzzy Subgroups |
title_full | On q-Rung Orthopair Fuzzy Subgroups |
title_fullStr | On q-Rung Orthopair Fuzzy Subgroups |
title_full_unstemmed | On q-Rung Orthopair Fuzzy Subgroups |
title_short | On q-Rung Orthopair Fuzzy Subgroups |
title_sort | on q rung orthopair fuzzy subgroups |
url | http://dx.doi.org/10.1155/2022/8196638 |
work_keys_str_mv | AT asimarazzaque onqrungorthopairfuzzysubgroups AT abdulrazaq onqrungorthopairfuzzysubgroups |