Metabolomic and microbial insights: Kai-Xin-San’s impact on Alzheimer’s disease pathology
Summary: There has been increasing interest in the connection between AD, gut microbiota, and metabolites. Kai-Xin-San (KXS) has been commonly employed in ancient and modern Chinese clinical trials for the treatment of dementia; however, whether the protective effect of KXS in AD is related to the g...
Saved in:
| Main Authors: | , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-07-01
|
| Series: | iScience |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2589004225010788 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Summary: There has been increasing interest in the connection between AD, gut microbiota, and metabolites. Kai-Xin-San (KXS) has been commonly employed in ancient and modern Chinese clinical trials for the treatment of dementia; however, whether the protective effect of KXS in AD is related to the gut microbiota remains elusive. APP/PS1 mice were used as the model of AD. 43 key metabolites influenced by KXS were screened using untargeted metabolomics. At the genus level, Clostridium_IV, Eubacterium, Acetatifactor, etc., were identified to be impacted by KXS using 16S rRNA sequencing. Additionally, we identified 9 distinct intestinal floras at the genus level that were correlated with 13 pivotal differential metabolites related to cognitive impairment. KXS also inhibited the neuroinflammation, mostly via regulating the key metabolites. A potential relationship between gut microbiota, metabolites, and neuroinflammation is suggested as a protective mechanism of KXS in AD. These findings provide support for further development of KXS. |
|---|---|
| ISSN: | 2589-0042 |