Characterization of Discontinuity and Mechanical Anisotropy of Shale Based on Continuum Damage Mechanics

The effect of the bedding structure on the mechanical properties of layered shale was studied by means of experiment and numerical simulation. Based on continuum damage theory and discrete fracture network modeling method (D-DFN), a finite element model describing structural discontinuity and mechan...

Full description

Saved in:
Bibliographic Details
Main Authors: Qinglin Shan, Peng Yan, Hengjie Luan, Yujing Jiang, Sunhao Zhang
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Geofluids
Online Access:http://dx.doi.org/10.1155/2021/5714547
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effect of the bedding structure on the mechanical properties of layered shale was studied by means of experiment and numerical simulation. Based on continuum damage theory and discrete fracture network modeling method (D-DFN), a finite element model describing structural discontinuity and mechanical anisotropy of shale is established. In this model, the degradation process of stiffness and strength of shale after failure is described based on the stress-displacement relationship of elements. In order to distinguish the mechanical properties between the bedding and the matrix, a nonzero initial damage variable is set in bedding elements to show initial lower elastic modulus and strength of bedding elements compared with initially nondamaged matrix elements. The calibration of model parameters is discussed, and the simulation results are compared with the experimental results. The results show that the D-DFN method can effectively simulate the anisotropic characteristics of shale deformation and strength, which verifies the effectiveness of the method.
ISSN:1468-8115
1468-8123