Existence of positive solutions for fractional Schrödinger equation with general nonlinearities in exterior domains

Abstract In this paper, we investigate the existence of positive solutions of the following fractional Schrödinger equation with general nonlinearities: { ( − Δ ) s u + λ u = f ( u ) , in Ω , u = 0 , on R N ∖ Ω , $$\begin{aligned} \left \{ \textstyle\begin{array}{l@{\quad }l@{\quad }l} (-\Delta )^{s...

Full description

Saved in:
Bibliographic Details
Main Author: Yalin Shen
Format: Article
Language:English
Published: SpringerOpen 2025-06-01
Series:Boundary Value Problems
Subjects:
Online Access:https://doi.org/10.1186/s13661-025-02074-y
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850225798345129984
author Yalin Shen
author_facet Yalin Shen
author_sort Yalin Shen
collection DOAJ
description Abstract In this paper, we investigate the existence of positive solutions of the following fractional Schrödinger equation with general nonlinearities: { ( − Δ ) s u + λ u = f ( u ) , in Ω , u = 0 , on R N ∖ Ω , $$\begin{aligned} \left \{ \textstyle\begin{array}{l@{\quad }l@{\quad }l} (-\Delta )^{s} u+\lambda u=f(u), \quad &\text{in}\; \Omega , \\ u=0, \quad &\text{on}\; \mathbb{R}^{N} \backslash \Omega , \end{array}\displaystyle \right . \end{aligned}$$ where N ≥ 2 $N\ge 2$ , s ∈ ( 0 , 1 ) $s\in (0,1)$ , Ω ⊂ R N $\Omega \subset \mathbb{R}^{N}$ is an exterior domain, i.e., Ω is an unbounded domain in R N $\mathbb{R}^{N}$ with R N ∖ Ω $\mathbb{R}^{N} \backslash \Omega $ nonempty and bounded, λ > 0 $\lambda >0$ is a parameter, and f ∈ C 1 ( R , R ) $f \in C^{1}(\mathbb{R},\mathbb{R})$ satisfies some technical conditions. We use variational and topological methods to prove that there is a positive solution u ∈ H 0 s ( Ω ) $u\in H^{s}_{0}(\Omega )$ if R N ∖ Ω $\mathbb{R}^{N} \backslash \Omega $ is small enough. Furthermore, the result can be extended to the fractional Kirchhoff equation with general nonlinearities.
format Article
id doaj-art-95f6a34593134ceebca65ba4a93a41ba
institution OA Journals
issn 1687-2770
language English
publishDate 2025-06-01
publisher SpringerOpen
record_format Article
series Boundary Value Problems
spelling doaj-art-95f6a34593134ceebca65ba4a93a41ba2025-08-20T02:05:14ZengSpringerOpenBoundary Value Problems1687-27702025-06-012025111710.1186/s13661-025-02074-yExistence of positive solutions for fractional Schrödinger equation with general nonlinearities in exterior domainsYalin Shen0School of Mathematical Sciences, Jiangsu UniversityAbstract In this paper, we investigate the existence of positive solutions of the following fractional Schrödinger equation with general nonlinearities: { ( − Δ ) s u + λ u = f ( u ) , in Ω , u = 0 , on R N ∖ Ω , $$\begin{aligned} \left \{ \textstyle\begin{array}{l@{\quad }l@{\quad }l} (-\Delta )^{s} u+\lambda u=f(u), \quad &\text{in}\; \Omega , \\ u=0, \quad &\text{on}\; \mathbb{R}^{N} \backslash \Omega , \end{array}\displaystyle \right . \end{aligned}$$ where N ≥ 2 $N\ge 2$ , s ∈ ( 0 , 1 ) $s\in (0,1)$ , Ω ⊂ R N $\Omega \subset \mathbb{R}^{N}$ is an exterior domain, i.e., Ω is an unbounded domain in R N $\mathbb{R}^{N}$ with R N ∖ Ω $\mathbb{R}^{N} \backslash \Omega $ nonempty and bounded, λ > 0 $\lambda >0$ is a parameter, and f ∈ C 1 ( R , R ) $f \in C^{1}(\mathbb{R},\mathbb{R})$ satisfies some technical conditions. We use variational and topological methods to prove that there is a positive solution u ∈ H 0 s ( Ω ) $u\in H^{s}_{0}(\Omega )$ if R N ∖ Ω $\mathbb{R}^{N} \backslash \Omega $ is small enough. Furthermore, the result can be extended to the fractional Kirchhoff equation with general nonlinearities.https://doi.org/10.1186/s13661-025-02074-yFractional Schrödinger equationsExterior domainPositive solutions
spellingShingle Yalin Shen
Existence of positive solutions for fractional Schrödinger equation with general nonlinearities in exterior domains
Boundary Value Problems
Fractional Schrödinger equations
Exterior domain
Positive solutions
title Existence of positive solutions for fractional Schrödinger equation with general nonlinearities in exterior domains
title_full Existence of positive solutions for fractional Schrödinger equation with general nonlinearities in exterior domains
title_fullStr Existence of positive solutions for fractional Schrödinger equation with general nonlinearities in exterior domains
title_full_unstemmed Existence of positive solutions for fractional Schrödinger equation with general nonlinearities in exterior domains
title_short Existence of positive solutions for fractional Schrödinger equation with general nonlinearities in exterior domains
title_sort existence of positive solutions for fractional schrodinger equation with general nonlinearities in exterior domains
topic Fractional Schrödinger equations
Exterior domain
Positive solutions
url https://doi.org/10.1186/s13661-025-02074-y
work_keys_str_mv AT yalinshen existenceofpositivesolutionsforfractionalschrodingerequationwithgeneralnonlinearitiesinexteriordomains