An Efficient Algorithm for Decomposition of Partially Ordered Sets
Efficient time complexities for partial ordered sets or posets are well-researched field. Hopcroft and Karp introduced an algorithm that solves the minimal chain decomposition in O (n2.5) time. Felsner et al. proposed an algorithm that reduces the time complexity to O (kn2) such that n is the number...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2023-01-01
|
| Series: | Journal of Mathematics |
| Online Access: | http://dx.doi.org/10.1155/2023/9920700 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Efficient time complexities for partial ordered sets or posets are well-researched field. Hopcroft and Karp introduced an algorithm that solves the minimal chain decomposition in O (n2.5) time. Felsner et al. proposed an algorithm that reduces the time complexity to O (kn2) such that n is the number of elements of the poset and k is its width. The main goal of this paper is proposing an efficient algorithm to compute the width of a given partially ordered set P according to Dilworth’s theorem. It is an efficient and simple algorithm. The time complexity of this algorithm is O (kn), such that n is the number of elements of the partially ordered set P and k is the width of P. The computational results show that the proposed algorithm outperforms other related algorithms. |
|---|---|
| ISSN: | 2314-4785 |