An Efficient SDOF Sweep Wing Morphing Technology for eVTOL-UAV and Experimental Realization

The presented study demonstrates that UAVs can be flown with a morphing wing to develop essential aerodynamic efficiency without a tail structure, which decides the operational cost and flight safety. The mechanical control for morphing is discussed, where the system design, simulation, and experime...

Full description

Saved in:
Bibliographic Details
Main Authors: Palaniswamy Shanmugam, Parammasivam Kanjikovil Mahali, Samikkannu Raja
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Drones
Subjects:
Online Access:https://www.mdpi.com/2504-446X/9/6/435
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The presented study demonstrates that UAVs can be flown with a morphing wing to develop essential aerodynamic efficiency without a tail structure, which decides the operational cost and flight safety. The mechanical control for morphing is discussed, where the system design, simulation, and experimental realization of ±15° SDOF sweep motion for a 7 kg eVTOL wing are detailed. The methodology, developed through a mathematical modeling of the mechanism’s kinematics and dynamics, is explained using Denavit–Hartenberg (D-H) convention, Lagrangian mechanics, and Euler–Lagrangian equations. The simulation and MBD analyses were performed in MATLAB R2021 and by Altair Motion Solve, respectively. The experiment was conducted on a dedicated test rig with two wing variants fitted with IMUs and an autopilot. The results from various methods were analyzed and experimentally compared to provide an accurate insight into the system’s design, modeling, and performance of the sweep morphing wing. The theoretical calculations by the mathematical model were compared with the test results. The sweep requirement is essential for eVTOL to have long endurance and multi-mission capabilities. Therefore, the developed sweep morphing mechanism is very useful, meeting such a demand. However, the results for three-dimensional morphing, operating sweep, pitch, and roll together are also presented, for the sake of completeness.
ISSN:2504-446X