Approximation theorems using the method of $\mathcal{I}_{2}$-statistical convergence

In this study, we utilize the concept of $\mathcal{I}$-statistical convergence for double sequences to establish a general approximation theorem of Korovkin-type for double sequences of positive linear operators $(PLOs)$ mapping from $H_{\omega }\left( X\right) $ to $C_{B}\left( X\right) $ where $%...

Full description

Saved in:
Bibliographic Details
Main Authors: Sevda Yıldız, Kamil Demirci, Fadime Dirik
Format: Article
Language:English
Published: Amasya University 2024-12-01
Series:Journal of Amasya University the Institute of Sciences and Technology
Subjects:
Online Access:https://dergipark.org.tr/en/download/article-file/4348876
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850147048061403136
author Sevda Yıldız
Kamil Demirci
Fadime Dirik
author_facet Sevda Yıldız
Kamil Demirci
Fadime Dirik
author_sort Sevda Yıldız
collection DOAJ
description In this study, we utilize the concept of $\mathcal{I}$-statistical convergence for double sequences to establish a general approximation theorem of Korovkin-type for double sequences of positive linear operators $(PLOs)$ mapping from $H_{\omega }\left( X\right) $ to $C_{B}\left( X\right) $ where $% X=\left[ 0,\infty \right) \times \left[ 0,\infty \right) .$ We then present an example that demonstrates the applicability of our new main result in cases where classical and statistical approaches are not sufficient. Furthermore, we compute the convergence rate of these double sequences of positive linear operators by employing the modulus of smoothness.
format Article
id doaj-art-95a803ffd2c5477bbad03d6d9774aca9
institution OA Journals
issn 2717-8900
language English
publishDate 2024-12-01
publisher Amasya University
record_format Article
series Journal of Amasya University the Institute of Sciences and Technology
spelling doaj-art-95a803ffd2c5477bbad03d6d9774aca92025-08-20T02:27:41ZengAmasya UniversityJournal of Amasya University the Institute of Sciences and Technology2717-89002024-12-0152798710.54559/jauist.158139036Approximation theorems using the method of $\mathcal{I}_{2}$-statistical convergenceSevda Yıldız0https://orcid.org/0000-0002-4730-2271Kamil Demirci1https://orcid.org/0000-0002-5976-9768Fadime Dirik2https://orcid.org/0000-0002-9316-9037SİNOP ÜNİVERSİTESİSİNOP ÜNİVERSİTESİSİNOP ÜNİVERSİTESİIn this study, we utilize the concept of $\mathcal{I}$-statistical convergence for double sequences to establish a general approximation theorem of Korovkin-type for double sequences of positive linear operators $(PLOs)$ mapping from $H_{\omega }\left( X\right) $ to $C_{B}\left( X\right) $ where $% X=\left[ 0,\infty \right) \times \left[ 0,\infty \right) .$ We then present an example that demonstrates the applicability of our new main result in cases where classical and statistical approaches are not sufficient. Furthermore, we compute the convergence rate of these double sequences of positive linear operators by employing the modulus of smoothness.https://dergipark.org.tr/en/download/article-file/4348876double sequencestatistical convergence$\mathcal{i}_{2}$-statistical convergencekorovkin theoremthe bleimann butzer and hahn operator
spellingShingle Sevda Yıldız
Kamil Demirci
Fadime Dirik
Approximation theorems using the method of $\mathcal{I}_{2}$-statistical convergence
Journal of Amasya University the Institute of Sciences and Technology
double sequence
statistical convergence
$\mathcal{i}_{2}$-statistical convergence
korovkin theorem
the bleimann butzer and hahn operator
title Approximation theorems using the method of $\mathcal{I}_{2}$-statistical convergence
title_full Approximation theorems using the method of $\mathcal{I}_{2}$-statistical convergence
title_fullStr Approximation theorems using the method of $\mathcal{I}_{2}$-statistical convergence
title_full_unstemmed Approximation theorems using the method of $\mathcal{I}_{2}$-statistical convergence
title_short Approximation theorems using the method of $\mathcal{I}_{2}$-statistical convergence
title_sort approximation theorems using the method of mathcal i 2 statistical convergence
topic double sequence
statistical convergence
$\mathcal{i}_{2}$-statistical convergence
korovkin theorem
the bleimann butzer and hahn operator
url https://dergipark.org.tr/en/download/article-file/4348876
work_keys_str_mv AT sevdayıldız approximationtheoremsusingthemethodofmathcali2statisticalconvergence
AT kamildemirci approximationtheoremsusingthemethodofmathcali2statisticalconvergence
AT fadimedirik approximationtheoremsusingthemethodofmathcali2statisticalconvergence