Serial FEM/XFEM-Based Update of Preoperative Brain Images Using Intraoperative MRI

Current neuronavigation systems cannot adapt to changing intraoperative conditions over time. To overcome this limitation, we present an experimental end-to-end system capable of updating 3D preoperative images in the presence of brain shift and successive resections. The heart of our system is a no...

Full description

Saved in:
Bibliographic Details
Main Authors: Lara M. Vigneron, Ludovic Noels, Simon K. Warfield, Jacques G. Verly, Pierre A. Robe
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:International Journal of Biomedical Imaging
Online Access:http://dx.doi.org/10.1155/2012/872783
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Current neuronavigation systems cannot adapt to changing intraoperative conditions over time. To overcome this limitation, we present an experimental end-to-end system capable of updating 3D preoperative images in the presence of brain shift and successive resections. The heart of our system is a nonrigid registration technique using a biomechanical model, driven by the deformations of key surfaces tracked in successive intraoperative images. The biomechanical model is deformed using FEM or XFEM, depending on the type of deformation under consideration, namely, brain shift or resection. We describe the operation of our system on two patient cases, each comprising five intraoperative MR images, and we demonstrate that our approach significantly improves the alignment of nonrigidly registered images.
ISSN:1687-4188
1687-4196