Multilingual Automatic Term Extraction in Low-Resource Domains
With the emergence of the neural networks-based approaches, research on information extraction has benefited from large-scale raw texts by leveraging them using pre-trained embeddings and other data augmentation techniques to deal with challenges and issues in Natural Language Processing tasks. In t...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
LibraryPress@UF
2021-04-01
|
| Series: | Proceedings of the International Florida Artificial Intelligence Research Society Conference |
| Online Access: | https://journals.flvc.org/FLAIRS/article/view/128502 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | With the emergence of the neural networks-based approaches, research on information extraction has benefited from large-scale raw texts by leveraging them using pre-trained embeddings and other data augmentation techniques to deal with challenges and issues in Natural Language Processing tasks. In this paper, we propose an approach using sequence-to-sequence neural networks-based models to deal with term extraction for low-resource domain. Our empirical experiments, evaluating on the multilingual ACTER dataset provided in the LREC-TermEval 2020 shared task on automatic term extraction, proved the efficiency of deep learning approach, in the case of low-data settings, for the automatic term extraction task. |
|---|---|
| ISSN: | 2334-0754 2334-0762 |