Advances in Computational Fluid Dynamics of Mechanical Processes in Food Engineering: Mixing, Extrusion, Drying, and Process Optimization
Mechanical processes such as mixing, extrusion, and drying are key operations in food engineering, with a significant impact on product quality and process efficiency. The increasing complexity of food materials—due to non-Newtonian properties, multiphase structures, and thermal–mechanical interacti...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-08-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/15/8752 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Mechanical processes such as mixing, extrusion, and drying are key operations in food engineering, with a significant impact on product quality and process efficiency. The increasing complexity of food materials—due to non-Newtonian properties, multiphase structures, and thermal–mechanical interactions—requires advanced modeling approaches for process analysis and optimization. Computational Fluid Dynamics (CFD) has become a vital tool in this context. This review presents recent progress in the use of CFD for simulating key mechanical operations in food processing. Applications include the analysis of fluid flow, heat and mass transfer, and mechanical stresses, supporting improvements in mixing uniformity, energy efficiency during drying, and optimization of extrusion components (e.g., shaping dies). The potential for integrating CFD with complementary models for system-wide optimization is also discussed, including challenges related to scale-up and product consistency. Current limitations are outlined, and future research directions are proposed. |
|---|---|
| ISSN: | 2076-3417 |