A content awareness module for predictive lossless image compression to achieve high throughput data sharing over the network storage

The idea of applying integer Reversible Colour Transform to increase compression ratios in lossless image compression is a well-established and widely used practice. Although various colour transformations have been introduced and investigated in the past two decades, the process of determining the...

Full description

Saved in:
Bibliographic Details
Main Authors: Asif Rajput, Jianqiang Li, Faheem Akhtar, Zahid Hussain Khand, Jason C Hung, Yan Pei, Anko Börner
Format: Article
Language:English
Published: Wiley 2022-03-01
Series:International Journal of Distributed Sensor Networks
Online Access:https://doi.org/10.1177/15501329221083168
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The idea of applying integer Reversible Colour Transform to increase compression ratios in lossless image compression is a well-established and widely used practice. Although various colour transformations have been introduced and investigated in the past two decades, the process of determining the best colour scheme in a reasonable time remains an open challenge. For instance, the overhead time (i.e. to determine a suitable colour transformation) of the traditional colour selector mechanism can take up to 50% of the actual compression time. To avoid such high overhead, usually, one pre-specified transformation is applied regardless of the nature of the image and/or correlation of the colour components. We propose a robust selection mechanism capable of reducing the overhead time to 20% of the actual compression time. It is postulated that implementing the proposed selection mechanism within the actual compression scheme such as JPEG-LS can further reduce the overhead time to 10%. In addition, the proposed scheme can also be extended to facilitate network-based compression–decompression mechanism over distributed systems.
ISSN:1550-1477