Bifurcation from Infinity and Resonance Results at High Eigenvalues in Dimension One

This paper is devoted to two different but related tags: firstly, the side of the bifurcation from infinity at every eigenvalue of the problem −u″(t)=λu(t)+g(t,u(t)), u∈H01(0,π), secondly, the solutions of the associated resonant problem at any eigenvalue. From the global shape of the nonlinearity g...

Full description

Saved in:
Bibliographic Details
Main Authors: José L. Gámez, Juan F. Ruiz-Hidalgo
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Journal of Function Spaces and Applications
Online Access:http://dx.doi.org/10.1155/2012/284696
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832561103883730944
author José L. Gámez
Juan F. Ruiz-Hidalgo
author_facet José L. Gámez
Juan F. Ruiz-Hidalgo
author_sort José L. Gámez
collection DOAJ
description This paper is devoted to two different but related tags: firstly, the side of the bifurcation from infinity at every eigenvalue of the problem −u″(t)=λu(t)+g(t,u(t)), u∈H01(0,π), secondly, the solutions of the associated resonant problem at any eigenvalue. From the global shape of the nonlinearity g we obtain computable integral values which will decide the behavior of the bifurcations and, consequently, the possibility of finding solutions of the resonant problems.
format Article
id doaj-art-951f5bd9c6c342189ce9ec857051a2e6
institution Kabale University
issn 0972-6802
1758-4965
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces and Applications
spelling doaj-art-951f5bd9c6c342189ce9ec857051a2e62025-02-03T01:25:58ZengWileyJournal of Function Spaces and Applications0972-68021758-49652012-01-01201210.1155/2012/284696284696Bifurcation from Infinity and Resonance Results at High Eigenvalues in Dimension OneJosé L. Gámez0Juan F. Ruiz-Hidalgo1Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, SpainDepartamento de Didáctica de la Matemática, Facultad de Ciencias de la Educación, Campus de Cartuja, Universidad de Granada, 18071 Granada, SpainThis paper is devoted to two different but related tags: firstly, the side of the bifurcation from infinity at every eigenvalue of the problem −u″(t)=λu(t)+g(t,u(t)), u∈H01(0,π), secondly, the solutions of the associated resonant problem at any eigenvalue. From the global shape of the nonlinearity g we obtain computable integral values which will decide the behavior of the bifurcations and, consequently, the possibility of finding solutions of the resonant problems.http://dx.doi.org/10.1155/2012/284696
spellingShingle José L. Gámez
Juan F. Ruiz-Hidalgo
Bifurcation from Infinity and Resonance Results at High Eigenvalues in Dimension One
Journal of Function Spaces and Applications
title Bifurcation from Infinity and Resonance Results at High Eigenvalues in Dimension One
title_full Bifurcation from Infinity and Resonance Results at High Eigenvalues in Dimension One
title_fullStr Bifurcation from Infinity and Resonance Results at High Eigenvalues in Dimension One
title_full_unstemmed Bifurcation from Infinity and Resonance Results at High Eigenvalues in Dimension One
title_short Bifurcation from Infinity and Resonance Results at High Eigenvalues in Dimension One
title_sort bifurcation from infinity and resonance results at high eigenvalues in dimension one
url http://dx.doi.org/10.1155/2012/284696
work_keys_str_mv AT joselgamez bifurcationfrominfinityandresonanceresultsathigheigenvaluesindimensionone
AT juanfruizhidalgo bifurcationfrominfinityandresonanceresultsathigheigenvaluesindimensionone