Bifurcation from Infinity and Resonance Results at High Eigenvalues in Dimension One

This paper is devoted to two different but related tags: firstly, the side of the bifurcation from infinity at every eigenvalue of the problem −u″(t)=λu(t)+g(t,u(t)), u∈H01(0,π), secondly, the solutions of the associated resonant problem at any eigenvalue. From the global shape of the nonlinearity g...

Full description

Saved in:
Bibliographic Details
Main Authors: José L. Gámez, Juan F. Ruiz-Hidalgo
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Journal of Function Spaces and Applications
Online Access:http://dx.doi.org/10.1155/2012/284696
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper is devoted to two different but related tags: firstly, the side of the bifurcation from infinity at every eigenvalue of the problem −u″(t)=λu(t)+g(t,u(t)), u∈H01(0,π), secondly, the solutions of the associated resonant problem at any eigenvalue. From the global shape of the nonlinearity g we obtain computable integral values which will decide the behavior of the bifurcations and, consequently, the possibility of finding solutions of the resonant problems.
ISSN:0972-6802
1758-4965