Numerical Analysis of Thermal and Flow Behaviors with Weld Microstructures During Laser Welding with Filler Wire for 2195 Al-Li Alloys

This study investigates the effects of heat transfer and molten pool flow behavior on the final structure of laser filler wire welds, aiming to improve weld quality. Laser filler wire welding experiments and numerical simulations were performed on 2195 Al-Li alloy workpieces with varying welding par...

Full description

Saved in:
Bibliographic Details
Main Authors: Dejun Liu, Qihang Xv, Gan Tian, Ling Zhao, Xinzhi Yang, Maochuan Li
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/15/4/348
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates the effects of heat transfer and molten pool flow behavior on the final structure of laser filler wire welds, aiming to improve weld quality. Laser filler wire welding experiments and numerical simulations were performed on 2195 Al-Li alloy workpieces with varying welding parameters. Numerical simulation of the heat transfer and flow in the molten pool was carried out using the CFD method, and the moving filler wire was introduced from the computational boundary by secondary development. Simulation results indicated that reducing welding speed and increasing wire feeding rate enhanced the cooling rate of the weld. Additionally, energy absorbed by the filler wire contributed between 6% and 16% of the total energy input during the liquid bridge transition. Comparing experimental and simulation data revealed that the cooling rate significantly affected the weld’s micro-structure and hardness. Notably, the formation of the equiaxed grain zone (EQZ) was crucial for weld performance. Excessive cooling rates hindered EQZ formation, reducing flow in this critical region. These findings offer valuable insights for optimizing welding parameters to enhance weld quality and performance.
ISSN:2075-4701