Impacts of the Assimilation of Radar Radial Velocity Data Using the Ensemble Kalman Filter (EnKF) on the Analysis and Forecast of Typhoon Lekima (2019)
High-resolution radar observations are essential to improving the numerical predictions of high-impact weather systems with data assimilation techniques. The numerical simulations of the landfall of Typhoon Lekima (2019) are conducted in the framework of the WRF model, investigating the impact of as...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Remote Sensing |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-4292/17/13/2258 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | High-resolution radar observations are essential to improving the numerical predictions of high-impact weather systems with data assimilation techniques. The numerical simulations of the landfall of Typhoon Lekima (2019) are conducted in the framework of the WRF model, investigating the impact of assimilating radar radial velocity observations via the Ensemble Kalman Filter (EnKF) on the typhoon’s analysis and forecast performance. The results demonstrate that the EnKF method significantly improves forecast accuracy for Typhoon Lekima, including track, intensity and the 24 h cumulative precipitation. To be specific, the control experiment significantly underestimated typhoon intensity, while EnKF-based radar radial velocity assimilation markedly improved near-surface winds (>48 m/s) in the typhoon core, refined vortex structure and reduced track forecast errors by 50–60%. Compared with the control and 3DVAR experiments, EnKF assimilation better captured typhoon precipitation patterns, with the highest ETS scores, especially for moderate-to-high precipitation intensities. Moreover, the detailed analysis and diagnostics of Lekima show that the warm core structure is better captured in the assimilation experiment. The typhoon system is also improved, as reflected by enhanced potential temperature and a more robust wind field analysis. |
|---|---|
| ISSN: | 2072-4292 |