Modeling of Historical Marine Casualty on S-100 Electronic Navigational Charts
With the increasing digitalization of maritime transportation, the demand for structured and interoperable data has grown. While the S-100 framework developed by the International Hydrographic Organization (IHO) provides a foundation for standardizing maritime information, a data model for represent...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/12/6432 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | With the increasing digitalization of maritime transportation, the demand for structured and interoperable data has grown. While the S-100 framework developed by the International Hydrographic Organization (IHO) provides a foundation for standardizing maritime information, a data model for representing marine casualties has not yet been developed. As a result, past incident data—such as collisions or groundings—remain fragmented in unstructured formats and are excluded from electronic navigational systems, limiting their use in safety analysis and route planning. To address this gap, this paper proposes a data model for structuring and visualizing marine casualty information within the S-100 standard. The model was designed by defining an application schema, constructing a machine-readable feature catalogue, and developing a portrayal catalogue and custom symbology for integration into Electronic Navigational Charts (ENCs). A case study using actual casualty records was conducted to examine whether the model satisfies the structural and portrayal requirements of the S-100 framework. The proposed model enables previously unstructured casualty data to be standardized and spatially integrated into digital chart systems. This approach allows accident information to be used alongside other S-100-based data models, contributing to risk-aware route planning and future applications in smart ship operations and maritime safety services. |
|---|---|
| ISSN: | 2076-3417 |