An Asymptotic Analysis of the Gradient Remediability Problem for Disturbed Distributed Linear Systems

The goal of this work is demonstrating, through the gradient observation of a   of type linear ( -systems), the possibility for reducing the effect of any disturbances (pollution, radiation, infection, etc.) asymptotically, by a suitable choice of related actuators of these systems. Thus, a class o...

Full description

Saved in:
Bibliographic Details
Main Authors: Soraya Rekkab, Samir Benhadid, Raheam Al-Saphory
Format: Article
Language:English
Published: University of Baghdad, College of Science for Women 2022-12-01
Series:مجلة بغداد للعلوم
Subjects:
Online Access:https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/6611
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The goal of this work is demonstrating, through the gradient observation of a   of type linear ( -systems), the possibility for reducing the effect of any disturbances (pollution, radiation, infection, etc.) asymptotically, by a suitable choice of related actuators of these systems. Thus, a class of  ( -system) was developed based on finite time  ( -system). Furthermore, definitions and some properties of this concept -system and asymptotically gradient controllable system ( -controllable) were stated and studied. More precisely, asymptotically gradient efficient actuators ensuring the weak asymptotically gradient compensation system ( -system) of known or unknown disturbances are examined. Consequently, under convenient hypothesis, the existence and the uniqueness of the control of type optimal, guaranteeing the asymptotically gradient compensation system ( -system), are shown and proven. Finally, an approach that leads to a Mathematical approximation algorithm is explored.
ISSN:2078-8665
2411-7986